• 제목/요약/키워드: reverse tolerance

검색결과 78건 처리시간 0.025초

A Neurobiological Concept of Schizophrenia - Approach to Vulnerability -

  • Sato, Mitsumoto
    • 생물정신의학
    • /
    • 제3권1호
    • /
    • pp.37-45
    • /
    • 1996
  • Recent studies on long-term outcome of schizophrenia revealed that schizophrenic symptoms recover in more than 50%, while it remains severe in less than 20% after 20 years or more from the onset. Psychopharmacological studies indicate that 75% of remitted schizophrenics may recur within 2 years after discontinuation of maintenance pharmacotherapy. In addition, family studies revealed that schizophrenic decompensation may occur significantly more frequent in discharged patients with high expressed emotion family than in low expressed emotion family. These findings strongly support a clinical validity of stress-vulnerability concept of schizophrenia which open a new viewpoint to two central problems in schizophrenia treatment, i.e. psychotic relapses and chronification of the fist episode schizophrenia. Moreover, recent psychopathological studies argue that schizophrenic symptoms are manifestations of psychological reaction secondary to a primary cognitive impairment(neurobiological vulnerability), which is originated in neurobiological changes in the brain. Recent approaches to the vulnerability to schizophrenic symptoms or schizophrenic decompensation are reviewed.

  • PDF

서브 프레임 제작용 다목적 용접지그 개발 (Development of Multipurpose Welding Jig for Sub-Frame)

  • 신형곤
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.131-136
    • /
    • 2011
  • In commercial vehicle, sub-frame which equipped in main frame supporting dump deck and oil tanker. This is the main structure for all equipment which including joint function. Sub-frame is made by welding process, this susceptible to deform and crack by its longitudinal size. Also various kind of sub-frame make it difficult to standardization in manufacturing process and exclusive jig is not adapted yet. Frame size is over 6~8m and weight is more than 300kg this make re-work more difficult. If manufacturing company made precise sub-frame, this is not only convenient for customers but also save the company money by reducing the working time. In this study manufacture the sub-frame be suitable for its main function and develop exclusive welding jig for obtain checking fixture function as well.

내독소내성 마우스에서 Nitric Oxide 생성에 미치는 림프구 부전 (Impaired Functions of Lymphocytes on Nitric Oxide Production in Endotoxin- Tolerant Mice)

  • 길영기;강미경
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1471-1478
    • /
    • 2008
  • 본 연구에서는 내독소내성 상태에 있는 마우스 세포의 싸이토카인 생성능을 측정하기 위하여 대식세포-림프구 공동배양계를 이용한 nitric oxide (NO) 생성을 조사하였다. 마우스 복강 대식세포에 lipopolysaccharide (LPS)와 interferon-g (IFN-g)를 처리시 NO 생성이 증가되었으며, tumor necrosis factor-a (TNF-a) 또한 LPS처럼 NO 합성을 자극하는 것을 관찰할 수 있었다. 한편, 대식세포를 비장세포와 공동배양시, LPS 단독처리만으로도 NO 합성이 증가되었다. 반면, 2.5 mg/kg LPS로 전처리하고 치사량의 LPS를 2차 투여한 마우스의 경우, 마우스의 치사 및 혈중 TNF-a와 IFN-g가 증가되지 않았다. 또한 LPS-내성 마우스로부터 분리한 대식세포를 정상 비장세포와 공동배양시 LPS에 의한 NO생성이 일어나지 않았으며, 외래 TNF-a에 의한 NO 생성도 일어나지 않았다. 이와 아울러 정상 대식세포와 LPS 내성 마우스로부터 분리한 비장세포를 공동배양하였을 때, LPS 자극으로 인한 NO 생성이 일어나지 않았으며, 이러한 억제현상은 외래 IFN-g 또는 IFN-g 생성을 촉진시키는 concanavalin A (ConA)에 의해서 다시 역전되었다. 이러한 결과는 대식세포 뿐만 아니라 림프구도 LPS 내성에 관여하는 것을 보여준다고 사료된다. INF-g는 TNF-a 발현을 증가시키기 때문에, 림프구의 INF-g 합성 감소는 LPS에 내성을 보이는 대식세포의 TNF-a 합성 저하와 상호작용으로 내독소내성 상태를 유도하며 과도한 염증반응을 억제하는 것으로 사료된다. 따라서 LPS 내독소내성은 중환자의 심각한 패혈증에 대한 예방법으로 활용될 수 있을 것으로 기대된다.

Transiently Experessed Salt-Stress Protection of Rice by Transfer of a Bacterial Gene, mtlD

  • Lee, Eun-A;Kim, Jung-Dae;Cha, Yoo-Kyung;Woo, Dong-Ho;Han, In-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.415-418
    • /
    • 2000
  • Productivity of a rice plant is greatly influenced by salt stress. One of the ways to achieve tolerance to salinity is to transfer genes encoding protective enzymes from other organisms, such as microorganisms. The bacterial gene, mtlD, which encodes mannitol-1-phosphate dehydrogenase (Mtl-DH), was introduced to the cytosol of a rice plant by an imbibition technique to overproduce mannitol. The germination and survival rate of the imbibed rice seeds were markedly increased by transferring the mtlD gene when it was delivered in either a pBIN19 or pBmin binary vector. When a polymerase chain reaction was performed with the genomic DNAs of the imbibed rice leaves as a template and with mtlD-specific primers, several lines were shown to contain an exogenous mtlD DNA. However, a reverse transcription (RT)-PCR analysis revealed that not all of them showed an expression of this foreign gene. This paper demonstrates that the growth and germination of rice plants transiently transformed with the bacterial gene, mtlD, are enhanced and these enhancements may have resulted from the experssion of the mtlD gene. The imbibition method empolyed in this study fulfills the requirements for testing the function of such a putative gene in vivo prior to the production of a stable transgenic plant.

  • PDF

Role of hyperforin in diabetes and its associated hyperlipidemia in rats

  • Ineedi, Srikanth;Shakya, Anshul;Singh, Gireesh Kumar;Kumar, Vikas
    • 셀메드
    • /
    • 제2권3호
    • /
    • pp.25.1-25.6
    • /
    • 2012
  • The aim of the present study was to evaluate the possible roles of hyperforin against hyperglycemia, hyperlipidemia and oxidative stress in streptozotocin-induced diabetic rats. Diabetes was induced by a single intraperitoneal injection of streptozotocin (65 mg/kg). Biochemical parameters were measured following hyperforin treatment (10 mg/kg, i.p.) for 7 days. Hyperforin treatment significantly reversed the elevations in plasma glucose, triglycerides, total cholesterol and LDL-cholesterol. Hyperforin also reversed the declines in plasma HDL-cholesterol and liver glycogen, but did not reverse the change in plasma insulin levels when compared to the diabetic control rats. Hyperforin treatment also reversed the oxidative stress induced by streptozotocin. Moreover, the effect of the hyperforin on peripheral glucose utilization in normal rats was evaluated by an oral glucose tolerance test (OGTT). Hyperforin treatment significantly increased (p < 0.05) the glucose tolerance compared to the vehicle in OGTT. The antihyperglycemic, antihyperlipidemic and antioxidant activities of hyperforin (10 mg/kg, i.p.) were comparable qualitatively to glibenclamide (1 mg/kg, p.o.). In conclusion, we report for the first time through an in vivo study that hyperforin is potentially valuable for the treatment of diabetes and its associated hyperlipidemia and oxidative stress by enhancing the glucose utilization by peripheral tissues such as muscle and adipose tissues.

Pharmacological Action of Panax Ginseng on the Behavioral Toxicities Induced by Psychotropic Agents

  • Kim Hyoung-Chun;Shin Eun-Joo;Jang Choon-Gon;Lee Myung-Koo;Eun Jae-Soon;Hong Jin-Tae;Oh Ki-Wan
    • Archives of Pharmacal Research
    • /
    • 제28권9호
    • /
    • pp.995-1001
    • /
    • 2005
  • Morphine-induced analgesia has been shown to be antagonized by ginseng total saponins (GTS), which also inhibit the development of analgesic tolerance to and physical dependence on morphine. GTS is involved in both of these processes by inhibiting morphine-6-dehydrogenase, which catalyzes the synthesis of morphinone from morphine, and by increasing the level of hepatic glutathione, which participates in the toxicity response. Thus, the dual actions of ginseng are associated with the detoxification of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contractions in guinea pig ileum (I-L-receptors) and mouse vas deferens $(\delta-receptors)$ are not mediated through opioid receptors, suggesting the involvement of non-opioid mechanisms. GTS also attenuates hyperactivity, reverse tolerance (behavioral sensitization), and conditioned place preference induced by psychotropic agents, such as methamphetamine, cocaine, and morphine. These effects of GTS may be attributed to complex pharmacological actions between dopamine receptors and a serotonergic/adenosine $A_{2A}1\delta-opioid$ receptor complex. Ginsenosides also attenuate the morphine-induced cAMP signaling pathway. Together, the results suggest that GTS may be useful in the prevention and therapy of the behavioral side effects induced by psychotropic agents.

Therapeutic Effects of Panax ginseng on the Neurotoxicity Induced by Abuse Drugs

  • Oh Ki-Wan
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2005년도 추계학술대회
    • /
    • pp.49-66
    • /
    • 2005
  • Panax ginseng has been useful for the treatment of diverse disease in oriental countries for thousands of years. In addition, a folk medicine prescribed by seven herbal drugs including Panax ginseng has been antinarcotics in the treatment of morphine-dependent patients. Many articles have been reported on these works. Therefore, we review the protective effects of Panax ginseng on the neurotoxicity induced by abuse drugs. Ginseng total saponins (GTS) extracted and isolated by Panax ginseng antagonized Morphine-induced analgesia, and inhibited the development of analgesic tolerance to and physical dependence on morphine. GTS inhibited morphine-6 dehydrogenase, which catalyzes production of mophinone from morphine, and increased hepatic glutathione level responsible to toxicity. Therefore, we hypothesized that these dual actions of ginseng can be associated with the detoxication of morphine. In addition, the inhibitory or facilitated effects of GTS on electrically evoked contraction in guinea pig ileum ($\mu$-receptors) and mouse vas deferens($\delta$-receptors) were not mediated through opioid receptors, suggesting non-opioid mechanisms. On the hand, antagonism of U-50,488H ($\kappa$-agonist)-induced antinociception is mediated by serotonergic mechanisms. GTS also inhibited hyperactivity, reverse tolerance (sensitization) and conditioned place preference-induced by psychostimulants such as methamphetamine, cocaine and morphine. On the other hand, GTS reduced the dopamine levels induced by methamphetamine. Moreover, GTS blocked the development of dopamine receptor activation, showing antidopaminergic effect. We suggest that GTS Prevent the methamphetamine-induced striatal dopaminergic neurotoxicity. In addition, Ginsenoside also attenuates morphine-induced cAMP signaling pathway. These results suggested that GTS might be useful for the therapy of the adverse actions of drugs with abuse liability.

  • PDF

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Mitophagy Improves Ethanol Tolerance in Yeast: Regulation by Mitochondrial Reactive Oxygen Species in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Lu, Zhang;Cui, liuqing;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1876-1884
    • /
    • 2020
  • Ethanol often accumulates during the process of wine fermentation, and mitophagy has critical role in ethanol output. However, the relationship between mitophagy and ethanol stress is still unclear. In this study, the expression of ATG11 and ATG32 genes exposed to ethanol stress was accessed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The result indicated that ethanol stress induced expression of the ATG11 and ATG32 genes. The colony sizes and the alcohol yield of atg11 and atg32 were also smaller and lower than those of wild type strain under ethanol whereas the mortality of mutants is higher. Furthermore, compared with wild type, the membrane integrity and the mitochondrial membrane potential of atg11 and atg32 exhibited greater damage following ethanol stress. In addition, a greater proportion of mutant cells were arrested at the G1/G0 cell cycle. There was more aggregation of peroxide hydrogen (H2O2) and superoxide anion (O2•-) in mutants. These changes in H2O2 and O2•- in yeasts were altered by reductants or inhibitors of scavenging enzyme by means of regulating the expression of ATG11 and ATG32 genes. Inhibitors of the mitochondrial electron transport chain (mtETC) also increased production of H2O2 and O2•- by enhancing expression of the ATG11 and ATG32 genes. Further results showed that activator or inhibitor of autophagy also activated or inhibited mitophagy by altering production of H2O2 and O2•. Therefore, ethanol stress induces mitophagy which improves yeast the tolerance to ethanol and the level of mitophagy during ethanol stress is regulated by ROS derived from mtETC.

사람의 암세포주 및 정상세포주에서 역전사 효소의 억제에 의한 세포 성장의 제한 (Arrest of Cell Growth by Inhibition of Endogenous Reverse Transcription Activity in Cancer and Somatic Cell Lines)

  • 김미정;이성호;박종근;전병균
    • 생명과학회지
    • /
    • 제34권6호
    • /
    • pp.365-376
    • /
    • 2024
  • 이 연구는 여러 종류의 암세포주(A-549, AGS, HCT-116, MDA-MB-231 및 U 87-MG)와 정상세포주(MRC-5 및 MSC)에 RNA를 DNA로 전환시킬 수 있는 역전사 효소의 억제 처리 후 세포의 성장에 미치는 영향을 비교 조사하였다. 각 세포주에 efavirenz (EFA) 역전사 효소 억제제를 1주일 동안 처리하였을 때, 세포 성장의 반억제농도(IC50) 값은 암세포주보다 정상세포주에서 더 높은 값을 나타냈다. 결정된 IC50 값에 따라 15 µM 농도로 EFA를 1주일 동안 처리하였을 때, 역전사 효소 및 말단소립 복원 효소의 활성은 EFA 처리군에서 비처리군에 비하여 유의적으로(p<0.05) 감소하였다. 그러나, 역전사 효소 및 말단소립 복원효소의 활성은 정상세포주에서는 검출되지 않았다. 15 µM EFA를 처리한 후, 암세포주와 정상세포주에서 세포성장율을 비교하였을 때, EFA 처리는 모든 세포의 성장을 억제하였는데, 정상세포주보다 암세포주에서 세포의 성장율이 현저하게(p<0.05) 감소하였다. 또한, 역전사 효소의 억제가 세포의 노화 및 사멸에 미치는 영향을 분석하기 위해 노화 관련 ß-galactosidase 효소의 활성을 분석하였을 때, EFA 처리가 노화관련 효소 활성이 점점 증가하는 것으로 보아, EFA 역전사 효소의 처리는 세포 노화 및 세포 사멸을 유도하는 것을 알 수 있었다. 이상의 결과를 바탕으로, 역전사 효소의 억제는 정상세포보다는 암세포의 성장을 더 억제하는 것을 알 수 있었지만, 항암치료 등에서 응용되기 위해서는 세포에서 역전사 효소의 기능과 역할에 대해서는 좀 더 심도있는 연구가 필요할 것으로 생각된다.