• Title/Summary/Keyword: reverse proteomics

Search Result 10, Processing Time 0.019 seconds

Development of Ultra-High Pressure Capillary Reverse-Phase Liquid Chromatography/Tandem Mass Spectrometry for High-Sensitive and High-Throughput Proteomics

  • Kim, Min-Sik;Choie, Woo-Suk;Shin, Yong-Seung;Yu, Myeong-Hee;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1833-1839
    • /
    • 2004
  • Recently mass spectrometry and separation methods such as liquid chromatography have become major tools in the field of proteomics. In this report, we describe in detail our efforts to develop ultra-high pressure capillary reverse-phase liquid chromatography (cRPLC) and its online coupling to a mass spectrometer by a nanoelectrospray (nanoESI) interface. The RPLC system is constructed in house to deliver LC solvents at the pressure up to 20,000 psig, which is four times higher than conventional RPLC systems. The high operation pressure allows the efficient use of packed micro-capillary columns (50, 75 and 150 ${\mu}$m i.d., up to 1.5 m long). We will discuss the effect of column diameter on the sensitivity of cRPLC/MS/MS experiments and the utility of the developed technique for proteome analysis by its application in the analysis of proteome samples having different levels of complexity.

The Reverse Proteomics for Identification of Tumor Antigens

  • Lee, Sang-Yull;Jeoung, Doo-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.879-890
    • /
    • 2007
  • The identification of tumor antigens is essential for the development of anticancer therapeutic vaccines and clinical diagnosis of cancer. SEREX (serological analysis of recombinant cDNA expression libraries) has been used to identify such tumor antigens by screening sera of patients with cDNA expression libraries. SEREX-defined antigens provide markers for the diagnosis of cancers. Potential diagnostic values of these SEREX-defined antigens have been evaluated. SEREX is also a powerful method for the development of anticancer therapeutics. The development of anticancer vaccines requires that tumor antigens can elicit antigen-specific antibodies or T lymphocytes. More than 2,000 antigens have been discovered by SEFEX. Peptides derived from some of these antigens have been evaluated in clinical trials. This review provides information on the application of SEREX for identification of tumor-associated antigens (TAA) for the development of cancer diagnostics and anticancer therapeutics.

Current status on plant functional genomics (식물 유전자 연구의 최근 동향)

  • Cho, Yong-Gu;Woo, Hee-Jong;Yoon, Ung-Han;Kim, Hong-Sig;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • As the completion of genome sequencing, large collection of expression data and the great efforts in annotating plant genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. Functional genome analysis of plants has entered the high-throughput stage. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. However, to identify the exact function of unknown genes it is necessary to understand each gene's role in the complex orchestration of all gene activities in the plant cell. Gene function analysis therefore necessitates the analysis of temporal and spatial gene expression patterns. The most conclusive information about changes in gene expression levels can be gained from analysis of the varying qualitative and quantitative changes of messenger RNAs, proteins and metabolites. New technologies have been developed to allow fast and highly parallel measurements of these constituents of the cell that make up gene activity. We have reviewed currently employed technologies to identify unknown functions of predicted genes including map-based cloning, insertional mutagenesis, reverse genetics, chemical mutagenesis, microarray analysis, FOX-hunting system, gene silencing mutagenesis, proteomics and chemical genomics. Recent improvements in technologies for functional genomics enable whole-genome functional analysis, and thus open new avenues for studies of the regulations and functions of unknown genes in plants.

Clues to Understand the Regulatory Metabolisms Governing the Biosynthesis of Fungal Secondary Metabolites

  • Choi, Yoon-E
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.14-14
    • /
    • 2015
  • Fungi are of particular interest due to their capacity to produce an extensive array of secondary metabolites. While many secondary metabolites have no known functions to the producing fungal organisms, these metabolites have tremendous importance to humans with beneficial (e.g., antibiotics) or detrimental (e.g., mycotoxins) properties. In this study, two important filamentous fungi, Fusarium verticillioides and Mycosphaerella graminicola were selected as target species and the genes regulatory functions on the biosynthesis of secondary metabolisms were studied. Functional genomics including forward and reverse genetics, and proteomics were utilized to better understand the complex secondary metabolism regulations in both F. verticillioides and M. graminicola. Identified genes in either F. verticillioides or M. graminicola background were CPP1 (a putative protein phosphatase gene), GAC1 (encoding a GTPase activating protein), MCC1(encoding c-type cyclin), and the velvet gene, MVE1. Our data suggest that there are diverse regulatory genes on fungal secondary metabolites with distinct or overlapping functional roles.

  • PDF

The Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) for Proteomics Research

  • Ng, Justin Tze-Yang;Hao, Piliang;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.95-103
    • /
    • 2014
  • Characterization and studies of proteome are challenging because biological samples are complex, with a wide dynamic range of abundance. At present the proteins are identified by digestion into peptides, with subsequent identification of the peptides by mass spectrometry (MS). MS is a powerful technique for the purpose, but it cannot identify every peptide in such complex mixtures simultaneously. For accurate analysis and quantification it is important to separate the peptides first by chromatography into fractions of a size that MS can handle. With these less complex fractions, the probability is increased of identifying peptides of low abundance that would otherwise experience ion suppression effects due to the presence of peptides of high abundance. Enrichment for peptides with certain post-translational modifications helps to increase their detection rates as well. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is a mixed-mode chromatographic technique which combines the use of electrostatic repulsion and hydrophilic interaction. This review provides an overview of ERLIC and its various proteomics applications. ERLIC has been demonstrated to have good orthogonality to reverse phase liquid chromatography (RPLC), making it useful as a first dimension in multidimensional liquid chromatography (MDLC) and fractionation of digests in general. Peptides elute in order of their isoelectric points and polarity. ERLIC has also been successfully utilized for the enrichment for phosphopeptides and glycopeptides, facilitating their identification. In addition, it is promising for the study of peptide deamidation. ERLIC performs comparably well or better than established methods for these various applications, and serves as a viable and efficient workflow alternative.

Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for Control of Colletotrichum gloeosporioides

  • Kim, Pyoung-Il;Ryu, Jae-Won;Kim, Young-Hwan;Chi, Youn-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.138-145
    • /
    • 2010
  • A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at $30^{\circ}C$. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. The molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1,080, (b) 1,486, and (c) 1,044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, lie, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A.

Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus

  • Di Wang;Dongjie Chen;Shengkui Xu;Fang Wei;Hongyuan Zhao
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.54.1-54.16
    • /
    • 2024
  • Importance: As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. Objective: This study examined the function of EP0 to provide a direction for its in-depth analysis. Methods: In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. Results: This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. Conclusions and Relevance: These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.

Change of Peroxiredoxin-5 Expression by Curcumin Treatment in Cerebral Ischemia (허혈성 대뇌손상시 curcumin 투여에 의한 peroxiredoxin-5 발현의 변화)

  • Gim, Sang-Ah;Koh, Phil-Ok
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.129-139
    • /
    • 2016
  • Curcumin plays a protective role in brain injury through its anti-oxidant and anti-inflammatory activities. Moreover, peroxiredoxin-5 exerts a protective effect against oxidative stress. The aim of this study was to investigate whether curcumin modulated the peroxiredoxin-5 expression in focal cerebral ischemic animal model. Middle cerebral artery occlusion(MCAO) was performed to induce cerebral ischemic injury in rats. Adult male rats were injected intraperitoneally with vehicle or curcumin(50mg/kg B.W.) 1 h after MCAO and cerebral cortex tissues were collected 24 h after MCAO. Photographs of hematoxylin and eosin staining showed that MCAO induced necrotic changes with scalloped shrunken form and apoptotic changes with nuclear chromatin condensations. However, curcumin treatment attenuated MCAO-induced histopathological changes. Moreover, this study clearly showed that peroxiredoxin-5 expression was decreased in MCAO operated animal with vehicle using a proteomics approach. However, this decrease in peroxiredoxin-5 expression was attenuated by curcumin treatment. Reverse-transcription PCR and Western blot analyses confirmed that curcumin treatment alleviated the MCAO injury-induced decrease in peroxiredoxin-5 expression(p<0.05). These results demonstrated that curcumin regulates peroxiredoxin-5 expression in MCAO animal model. In conclusion, our findings suggest that curcumin exerts a neuroprotective effect in cerebral ischemia by attenuating the MCAO-induced decrease in peroxiredoxin-5 expression.

Study of Viral Effects of the Mycovirus (LeV) and Virus-Free Commercial Line in the Edible Mushroom Lentinula edodes

  • Kim, Jung-Mi;Song, Ha-Yeon;Yun, Suk-Hyun;Lee, Hyun-Suk;Ko, Han-Kyu;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.37-37
    • /
    • 2015
  • dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed an identical sequence to known RdRp genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that, although variations in the growth rate existed among progeny and virus infection was observed in highly actively growing progeny, there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny. This study attempted to cure the edible mushroom L. edodes strain FMRI0339 of the L. edodes mycovirus (LeV) in order to obtain an isogenic virus-free fungal strain as well as a virus-infected strain for comparison. Mycelial fragmentation, followed by being spread on a plate with serial dilutions resulted in a virus-free colony. Viral absence was confirmed with gel electrophoresis after dsRNA-specific virus purification, Northern blot analysis, and PCR using reverse transcriptase (RT-PCR). Once cured, all of fungal cultures remained virus-free over the next two years. Interestingly, the viral titer of LeV varied depending on the culture condition. The titer from the plate culture showed at least a 20-fold higher concentration than that grown in the liquid culture. However, the reduced virus titer in the liquid culture was recovered by transferring the mycelia to a plate containing the same medium. In addition, oxygen-depleted culture conditions resulted in a significant decrease of viral concentration, but not to the extent seen in the submerged liquid culture. Although no $discernable phenotypic changes in colony morphology were observed, virus-cured strains showed significantly higher growth rates and mycelial mass than virus-infected strains. We were also explored effects of LeV on fruiting body formation and mushroom yield. The fruiting body formation yield of virus-free L. edodes was larger than virus-infected L. edodes. These results indicate that LeV infection has a deleterious effect on mycelial growth and fruiting body formation. In addition, we have been investigated host-parasite interaction between L. edodes and its mycovirus interaction to study viral mechanism by establishment of proteomics.

  • PDF

Parabiosis and Blood Exchange Techniques in Aging Research (개체병렬결합(parabiosis)실험모델과 혈액교환을 이용한 노화(aging)연구 분석)

  • Kyung Tae Chung
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.208-215
    • /
    • 2023
  • In recent decades, the field of aging research has progressed from the genetic and cellular levels to in vivo models of blood exchange. Since genes capable of extending the lifespan in C. elegance have been reported, various potential target molecules have been discovered through genomics, proteomics, metabolomics, and transcriptomics. Accordingly, research on the interactions between target molecules has also been increasing. The parabiosis method, in which two experimental animals are surgically combined, was introduced, and a factor that could reverse the aging phenomenon was discovered using this method. The parabiosis method is used to find more accurate and effective aging-reversal factors that could exist in young blood. As more new evidence has been revealed, the parabiosis method has established a new paradigm for aging research. Moreover, a device capable of exchanging blood elaborately in laboratory animals was published in 2022 and presented new results necessary for aging reversal. Since GDF11, was reported, many other anti-aging candidates that are soluble factors in blood, such as β2m, TIMP2, VCAM1, Gpld1, and clusterin, have been discovered. In addition, mcicroglia cells and neuroinflammation have been directly proven to be aging factors. These latest research results were obtained by parabiosis, the newly designed device for plasmapheresis, and injecting young blood or conditioned blood methods. In this review, we discuss the latest research results using the device and young blood administration in old mice.