Browse > Article
http://dx.doi.org/10.4014/jmb.0905.05007

Production of Biosurfactant Lipopeptides Iturin A, Fengycin, and Surfactin A from Bacillus subtilis CMB32 for Control of Colletotrichum gloeosporioides  

Kim, Pyoung-Il (School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Seoul National University)
Ryu, Jae-Won (Department of Biotechnology, Graduate School, Chonnam National University)
Kim, Young-Hwan (Proteomics Team, Korea Basic Science Institute)
Chi, Youn-Tae (School of Biological Sciences and Technology and Biotechnology Research Institute, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.1, 2010 , pp. 138-145 More about this Journal
Abstract
A bacterial strain isolated from soil for its potential to control the anthracnose disease caused by Colletotrichum gloeosporioides was identified as a Bacillus subtilis. Bacillus subtilis CMB32 produced antifungal agents on M9 broth at $30^{\circ}C$. Biosurfactant lipopeptides produced by Bacillus subtilis CMB32 were precipitated by adjusting to pH 2 and extracting using chloroform/methanol, and then were purified using column chromatography and reverse-phase HPLC. The molecular masses of the lipopeptides were estimated by MALDI-TOF mass spectrometry as (a) 1,080, (b) 1,486, and (c) 1,044 Da, respectively. They had cyclic structures and amino acid compositions of (a) Pro, Asx, Ser, Tyr, Glx, (b) Glx, Tyr, Thr, Ala, Pro, lie, and (c) Glx, Leu, Val, Asx, respectively. Further analysis revealed that Bacillus subtilis CMB32 produced three antifungal lipopeptides: (a) iturin A, (b) fengycin, and (c) surfactin A.
Keywords
Bacillus subtilis CMB32; Colletotrichum gloeosporioides; iturin A; fengycin; surfactin A; MALDI-TOF mass spectrometry;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
연도 인용수 순위
1 Horowitz, S. and W. M. Griffin. 1991. Structural analysis of Bacillus licheniformis 86 surfactant. J. Ind. Microbiol. Biotechnol. 7: 45-52.
2 Kowall, M., J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 203: 1-8.   DOI   ScienceOn
3 Jenny, K., V. Deltrieu, and O. Kappelli. 1993. Lipopeptide production by Bacillus licheniformis, pp. 135-156. In N. Kosaric (ed.). Biosurfactants. Marcel Dekker, New York.
4 Lin, S. C., M. A. Milton, M. M. Sharma, and G. Georgiou. 1994. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol. 60: 31-38.
5 Stabb, E. V., L. M. Jacobson, and J. Handelsman. 1994. Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl. Environ. Microbiol. 60: 4404-4412.
6 Vater, J. 1986. Lipopeptides, an attractive class of microbial surfactants. Prog. Colloid Polymer Sci. 72: 12-18.   DOI
7 Grangemard, I., J. M. Bonmatin, J. Bernillon, B. C. Das, and F. Peypoux. 1999. Lichenysin G, a novel family of lipopeptide biosurfactants from Bacillus licheniformis IM 1307: Production, isolation and structural evaluation by NMR and mass spectrometry. J. Antibiot. (Tokyo) 52: 363-373.   DOI
8 Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1977. Structure of bacillomycin L, an antibiotic from Bacillus subtilis. Eur. J. Biochem. 77: 61-67.   DOI   ScienceOn
9 Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and K. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223: 47-51.   DOI   ScienceOn
10 Cook, R. J., L. S. Thomashow, D. M. Weller, D. Fujimoto, M. Mazzola, G. Bangera, and D. S. Kim. 1995. Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. U.S.A. 96: 8937-8942.
11 Hiradate, S., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61: 693-698.   DOI   ScienceOn
12 Lee, S. C., J. S. Yoo, S. H. Kim, S. Y. Chung, C. W. Hwang, W. H. Joo, and Y. L. Choi. 2006. Production and characterization of lipopeptide biosurfactant from Bacillus subtilis A8-8. J. Microbiol. Biotechnol. 16: 716-723.
13 Leenders, F., T. H. Stein, B. Kablitz, P. Franke, and J. Vater. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13: 943-949.   DOI   ScienceOn
14 Maget-Dana, R., L. Thimon, F. Peypoux, and M. Ptack. 1992. Surfactin/Iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047-1051.   DOI   ScienceOn
15 Peypoux, F., M. Guimand, G. Michel, L. Delcambe, B. C. Das, and E. Lederec. 1978 Structure of iturin A, a peptidolipid antibiotic from Bacillus subtilis. Biochemistry 17: 3992-3996.   DOI   ScienceOn
16 McKeen, C. D., C. C. Relly, and P. L. Pusey. 1996. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76: 136-139.
17 Masih, E. I., I. Alie, and B. Paul. 2000. Can the grey mould disease of the grape-vine be controlled by yeasts- FEMS Microbiol. Lett. 189: 233-237.   DOI   ScienceOn
18 Masih, E. I. and B. Paul. 2002. Secretion of ${\beta}$-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mould disease of the grapevine. Curr. Microbiol. 44: 391-395.   DOI   ScienceOn
19 Raposo, R., V. Gomez, T. Urrutia, and P. Melgarejo. 2000. Fitness of Botrytis cinerea associated with dicarboximide resistance. Phytopathology 90: 1246-1249.   DOI   ScienceOn
20 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1987. Molecular Cloning - A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
21 Sheppard, J. D., C. Jumarie, D. G. Cooper, and R. Laprade. 1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim. Biophys. Acta 1064: 13-23.   DOI   ScienceOn
22 Suk, W. S., H. J. Son, G. Lee, and S. J. Lee. 1999. Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J. Microbiol. Biotechnol. 9: 56-61.
23 Thaniyavarn, J., N. Roongsawang, T. Kameyama, M. Haruki, T. Imanaka, M. Morikawa, and S. Kanaya. 2003. Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci. Biotechnol. Biochem. 67: 1239-1244.   DOI   ScienceOn
24 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
25 Yakimov, M. M., W. R. Abraham, H. Meyer, I. Giuliana, and P. N. Golyshin. 1999. Structural characterization of lichenysin A components by fast atom bombardment tandem mass spectrometry. Biochim. Biophys. Acta 1438: 273-280.   DOI   ScienceOn
26 Beever, R. E., E. P. Larcy, and H. A. Pak. 1989. Strains of Botrytis cinerea resistant to dicarboxymide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol. 38: 427-437.   DOI
27 Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91: 181-187.   DOI   ScienceOn
28 Yu, G. Y., J. B. Sinclair, G. L. Hartman, and B. L. Bertagnolli. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol. Biochem. 34: 955-963.   DOI   ScienceOn
29 Deleu, M., H. Razafindralambo, Y. Popineau, P. Jacques, P. Thonart, and M. Paquot. 1999. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surf. A Physicochem. Eng. Aspects 61: 47-64.
30 Cho, S. J., S. Y. Hong, J. Y. Kim, S. Y. Park, M. K. Kim, W. J. Lim, et al. 2003. Endophytic Bacillus sp. CY22 from a balloon flower (Platycodon grandiflorum) produces surfactin isoforms. J. Microbiol. Biotechnol. 13: 859-869.
31 Nishikiori, T., H. Naganawa, Y. Muraoka, T. Aoyagi, and H. Umezawa. 1986. The conformational studies of plipastatin A1 by 400 MHz proton magnetic resonance. J. Antibiot. (Tokyo) 39: 860-863.   DOI
32 Klich, M. A., K. S. Arthur, A. R. Lax, and J. M. Bland. 1994. Iturin A: A potential new fungicide for stored grains. Mycopathologia 127: 123-127.   DOI   ScienceOn
33 Peypoux, F., M. T. Pommier, D. Marion, M. Ptak, B. C. Das, and W. M. Griffin. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39: 636-641.   DOI
34 Raaijmakers, J. M., M. Vlami, and J. de Souza. 2002. Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81: 537-547.   DOI   ScienceOn
35 Schneider, J. 1999. Doctoral thesis. University of Cologne, Cologne, Germany.
36 Cohen, S. A., M. Meys, and T. L. Tarvin. 1989. The Pico Tag Method. A Manual of Advanced Techniques for Amino Acid Analysis. Millipore, Bedford, MA.
37 Kim, P. I., H. Bai, D. Bai, H. Chae, S. Chung, Y. Kim, R. Park, and Y. T. Chi. 2004. Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J. Appl. Microbiol. 97: 942-949.   DOI   ScienceOn
38 Schneider, J., K. Taraz, H. Budzikiewicz, P. Jacques, and P. Thonart. 1999. The structure of two fengycins from Bacillus subtilis S499. Z. Naturforsch. 54: 859-865.
39 Fiedler, H. P. and W. Umbach. 1987. Cosmetics and toiletries, pp. 350-398. In J. Falbe (ed.). Surfactants in Consumer Products: Theory, Technology and Applications. Springer-Verlag, Heidelberg.
40 Harris, A. R. and P. G. Adkins. 1999. Versatility of fungal and bacterial isolates for biological control of damping-off disease caused by Rhizoctonia solani and Pythium spp. Biol. Control 15: 10-18.   DOI   ScienceOn
41 Trischman, J. A., P. R. Jensen, and W. Fenical. 1994. Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Lett. 35: 5571-5574.   DOI   ScienceOn
42 Vater, J., B. Kablitz, C. Wilde, P. Franke, N. Mehta, and S. S. Cameotra. 2004. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 68: 6210-6219.
43 Besson, F., F. Peypoux, G. Michel, and L. Delcambe. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiot. 29: 1043-1049.   DOI
44 Barka, E. A., A. Belarbi, C. Hachet, J. Nowak, and J. C. Audran. 2000. Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol. Lett. 186: 91-95.   DOI   ScienceOn
45 Wilson, C. L., E. Wisniewski, A. El-Ghaouth, S. Droby, and E. Chalutz. 1996. Commercialization of antagonistic yeasts for the biological control of postharvest diseases of fruits and vegetables. SIM News 46: 237-242.
46 Chen, T. W. and W. S. Wu. 1999. Biological control of carrot black rot. J. Phytopathol. 147: 99-104.
47 Bartlett, D. W., J. M. Clough, J. R. Godwin, A. A. Hall, M. Hamer, and B. Parr-Dobrzanski. 2002. The strobilurin fungicides. Pest. Manag. Sci. 58: 649-662.   DOI   ScienceOn
48 Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
49 He, H., L. A. Silo-Suh, and J. Handelsman. 1994. Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett. 35: 2499-2502.   DOI   ScienceOn
50 Leifert, C., H. Li, S. Chidburee, S. Hampson, S. Workman, D. Sigee, H. A. Epton, and A. Harbour. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78: 97-108.   DOI
51 Hue, N., L. Serani, and O. Laprevote. 2001. Structural investigation of cyclic peptidolipids from Bacillus subtilis by high-energy tandem mass spectrometry. Rapid Commun. Mass Spectrom. 15: 203-209.   DOI   ScienceOn