• Title/Summary/Keyword: reverse osmosis system

Search Result 130, Processing Time 0.021 seconds

A Study of the Optimization Process Combination on the Ultrapure Water Treatment System (초순수 생산을 위한 최적공정 조합 평가)

  • Lee, Kyung Hyuk;Kim, Dong Gyu;Kwon, Boung Su;Jung, Kwan Sue
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.364-370
    • /
    • 2016
  • In this paper, the technique that determines efficient process combinations for the ultrapure water production was studied. The ultrapure water is one of the industrial water used in industrial activity and required in the advanced technology integrated industry. It is produced by combined process including filtration, ion exchange processes, the reverse osmosis (RO) process, degassing (DG) process and UV-oxidation (UVox) process. An ultrapure water production process consists of 15-20 different water treatment unit process. In this study, a pilot plant was built and operated to research the design parameters for the individual process. Through the pilot plant operation, 19 effective combinations were optimized among various processes. And then, 11 of them satisfied the final quality of the ultrapure water. The stability and economic feasibility were evaluated about the final 11 process combinations.

Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater (금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가)

  • Ha, Dong-Hwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 2013
  • Several pretreatment processes such as softening, coagulation and precipitation, activated carbon adsorption, ion-exchange and neutralization processes were studied to remove organics and inorganics for selection of the RO based reusing system of metal industry wastewater. The effects of the hydrophobic/hydrophilic fractions of the organics on DOC removal were tested and used to optimize the combination process. Among various pretreatment processes, softening could reduce 93.4% of hardness and could remove all hydrophobic organics from the effluent of metal industry wastewater. Softening followed by coagulation process could reduce DOC (Dissolved Organic Carbon) from 5.1 mg/L to 1.6 mg/L. In addition, as a result of physiochemical pretreatment to raw wastewater of metal industry, neutralization with NaOH showed an efficient removal of iron and TDS (Total Dissolved Solids) without increase in the hardness.

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD) (다중 호기 소화공정을 이용한 양돈분뇨 슬러리의 자원화 연구)

  • Kim, Soo-Ryang;Yoon, Seong-Ho;Lee, Jun-Hee;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.

  • PDF

A Study on Reuse of Reclaimed Water in Jeonbuk Province (전북지역 하수처리수 재이용 방안 연구)

  • Cho, Changwoo;Kim, Jintae;Park, Jeongjae;Song, Juhoon;Lee, Miseon;Jeong, Juri;Ryou, Jaewoong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.237-245
    • /
    • 2017
  • This study was aimed at investigating effluent water quality and proposing reuse possibilities for 12 sewage treatment plants discharged more than $5,000m^3/day$ in order to recycle the sewage treatment plant effluent of Jeollabuk-do effectively. Additionally, a laboratory scale test for reprocessing water discharge was performed. Categories of reclaimed sewage water reuse were divided into 7 topics and analyzed a total of 28 items including 16 heavy metals based on water quality standard. As a results, color, BOD, TN, chloride and Electrical Conductivity (EC) exceeded reused water quality standard. In particular, color and TN exceeded in 8 and 5 sewage treatment plants, respectively. The value of chloride and EC were high in sewage treatment plants including the food and industrial wastewater. At 4 sewage treatment plants were possible to reuse without re-treatment. The laboratory scale test was conducted to SandFilter (SF)-Granular Activated Carbon (GAC)-MicroFiltraion (MF)-Reverse Osmosis (RO). Both the removal efficiencies and economic feasibility of total E. coli., color and Suspended Solid (SS) suited in case using the SF-GAC treatment method. The removal of chloride and EC had little effect in the case of SF-GAC-MF system, but RO showed over 90% of removal efficiency. After using SF-GAC process only, the concentration of $UV_{254}$ decreased sharply from 0.3651 /cm to 0.0306 /cm and it showed over 92% of removal efficiency rate. In conclusion, for the effective reuse of sewage discharged water, water quality and the surrounding terrain of treatment plants should be all taken into account. If it needed for the reprocessing, both the selection for treatment and economic combination treatment methods will have to be considered.

Adhesion Characteristics and the High Pressure Resistance of Biofilm Bacteria in Seawater Reverse Osmosis Desalination Process (역삼투 해수담수화 공정 내 바이오필름 형성 미생물의 부착 및 고압내성 특성)

  • Jung, Ji-Yeon;Lee, Jin-Wook;Kim, Sung-Youn;Kim, In-S.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2009
  • Biofouling in seawater reverse osmosis (SWRO) desalination process causes many problems such as flux decline, biodegradation of membrane, increased cleaning time, and increased energy consumption and operational cost. Therefore biofouling is considered as the most critical problem in system operation. To control biofouling in early stage, detection of the most problematic bacteria causing biofouling is required. In this study, six model bacteria were chosen; Bacillus sp., Flavobacterium sp., Mycobacterium sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhodobacter sp. based on report in the literature and phylogenetic analysis of seawater intake and fouled RO membrane. The adhesion to RO membrane, the high pressure resistance, and the hydrophobicity of the six model bacteria were examined to find out their fouling potential. Rhodobacter sp. and Mycobacterium sp. were found to attach very well to RO membrane surface compared to others used in this study. The test of hydrophobicity revealed that the bacteria which have high hydrophobicity or similar contact angle with RO membrane ($63^{\circ}$ of contact angle) easily attached to RO membrane surface. P. aeruginosa which is highly hydrophilic ($23.07^{\circ}$ of contact angle) showed the least adhesion characteristic among six model bacteria. After applying a pressure of 800 psi to the sample, Rhodobacter sp. was found to show the highest reduction rate; with 59-73% of the cells removed from the membrane under pressure. P. fluorescens on the other hand analyzed as the most pressure resistant bacteria among six model bacteria. The difference between reduction rates using direct counting and plate counting indicates that the viability of each model bacteria was affected significantly from the high pressure. Most cells subjected to high pressure were unable to form colonies even thought they maintained their structural integrity.

A Study on the Biological Treatment of RO Concentrate Using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 RO 농축수의 생물학적 처리에 관한 연구)

  • Kim, Hyun Gu;Ahn, Dae Hee;Cho, Eun Ha;Kim, Han Yong;Ye, Hyoung Young;Mun, Jung Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The purpose of this study is to efficiently improve biological sequencing batch reactor (SBR) system of high-concentrated nitrate nitrogen in reverse osmosis (RO) concentrates by total dissolved solids (TDS) regulation. Since a laboratory-scale SBR system had been operated, we had analyzed specific denitrification rate (SDNR) and specific oxygen uptake rate (SOUR) for microbial activity in according to various injection concentration of TDS. As a result, higher injection concentration of TDS decreased SDNR, and delayed denitrification within denitrification process. Moreover, the higher injection concentration of TDS was, the lower microbial activity was during operation of laboratory-scale SBR system. Therefore, the regulation of TDS injection concentration is necessary to improve efficiency of nitrate nitrogen in the biological SBR system, and treatment of calcium ion ($Ca^{2+}$) is also specifically focused to remove nitrate nitrogen. Moreover, analytical data of SDNR and SOUR can be the effective kinetic design parameters to application of biological treatment of RO concentrate by aerobic granular sludge (AGS).

Evaluation of Denitrification Efficiency and Functional Gene Change According to Carbon(Fumarate) Concentration and Addition of Nitrate Contaminated-soil in Batch System (회분식반응조 실험을 통한 탄소원(Fumarate) 주입조건에 따른 지하수 중 탈질율 및 탈질 관련 기능성 유전자 분석)

  • Park, Sunhwa;Kim, Hyun-Koo;Kim, Moon-su;Lee, Gyeong-Mi;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Young;Kim, Tae-seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.80-89
    • /
    • 2015
  • Nitrate is on the most seriou pollutant encountered in shallow groundwater aquifer in agricultural area. There are various remediation technologies such as ion exchange, reverse osmosis, and biological denitrification to recover from nitrate contamination. Biological denitrification by indigenous microorganism of the technologies has been reviewed and applied on nitrate contaminated groundwater. In this work, we selected the site where the annual nitrate (NO3) concentration is over 105 mg/L and evaluated denitrification process with sampled soil and groundwater from 3 monitoring wells (MW4, 5, 6). In the results, the nitrate degradation rate in each well (MW 4, 5, and 6) was 25 NO3 mg/L/day, 6 NO3 mg/L/day, and 3.4 NO3 mg/L/day, respectively. Nitrate degradation rate was higher in batch system treated with 2 times higher fumarate as carbon source than control batch system (0.42M fumrate/1M NO3), comparing with batch system with soil sample. This result indicates that increase of carbon source is more efficient to enhance denitrification rate than addition of soil sample to increase microbial dynamics. In this work, we also confirmed that monitoring method of functional genes (nirK and nosZ) involved in denitrification process can be applied to evaluated denitrifcation process possibility before application of field process such as in-situ denitrification by push-pull test.

A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System (핵종 이온 광물화 처리기술의 APR 1400 발전소 액체방사성폐기물관리계통 적용 위치에 대한 고찰)

  • Go, Kyung-Min;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.419-427
    • /
    • 2019
  • The application of ion crystallization technology was considered as a way to increase the operating efficiency and improve the operating performance of a liquid waste management system (LWMS) in the Advanced Power Reactor 1400 (APR 1400). Although ion crystallization technology has not been practically applied to Nuclear Power Plants (NPPs) until now, a previous experimental study demonstrated that it is possible to selectively remove at least 95% of various nuclide ions present in the liquid radioactive waste of NPPs. We reviewed the possibility of applying ion crystallization technology to the existing LWMS by applying the nuclide removal rate of ion crystallization technology and prepared a way to improve the existing LWMS in the APR 1400. Furthermore, we determined the optimized application location of ion crystallization technology in the existing LWMS by considering decontamination characteristics of the ion crystallization technology and the existing LWMS design features and operating experiences. The application of ion crystallization technology to the liquid waste collection tank, where liquid radioactive materials are collected, will have the least impact on the existing design while providing the greatest improvement. It is expected that the application of ion crystallization technology to the current APR 1400 or new NPPs would increase the operating efficiency of the LWMS and result in an improvement of system performance.

Development of Chemical and Biological Decontamination Technology for Radioactive Liquid Wastes and Feasibility Study for Application to Liquid Waste Management System in APR1400 (액체방사성폐기물에 대한 화학적, 생물학적 제염기술 개발 및 APR1400 액체폐기물관리계통 적용을 위한 타당성 연구)

  • Son, YoungJu;Lee, Seung Yeop;Jung, JaeYeon;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.1
    • /
    • pp.59-73
    • /
    • 2019
  • A decontamination technology for radioactive liquid wastes was newly developed and hypothetically applied to the liquid waste management system (LWMS) of the nuclear power plant (NPP) to evaluate its decontamination efficacy for the purpose of the fundamental reduction of spent resins. The basic principle of the developed technology is to convert major radionuclide ions in the liquid wastes into inorganic crystal minerals via chemical or biological techniques. In a laboratory batch experiment, the biological method selectively removed more than 80% of cesium within 24 hours, and the chemical method removed more than 95% of cesium. Other major nuclides (Co, Ni, Fe, Cr, Mn, Eu), which are commonly present in nuclear radioactive liquid wastes, were effectively scavenged by more than 99%. We have designed a module including the new technology that could be hypothetically installed between the reverse osmosis (R/O) package and the organic ion-exchange resin in the LWMS of the APR1400 reactor. From a technical evaluation for the virtual installation, we found that more than 90% of major radionuclides in the radioactive liquid wastes were selectively removed, resulting in a large volume reduction of spent resins. This means that if the new technology is commercialized in the future, it could possibly provide drastic cost reduction and significant extension of the life of resins in the management of spent resins, consequently leading to delay the saturation time of the Wolsong repository.