• Title/Summary/Keyword: reverse engineered 3D model

Search Result 5, Processing Time 0.027 seconds

Safety diagnosis process for deteriorated buildings using a 3D scan-based reverse engineering model

  • Jae-Min Lee;Seungho Kim;Sangyong Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 2023
  • As the number of deteriorated buildings increases, the importance of safety diagnosis, maintenance, and the repair of buildings also increases. Traditionally, building condition assessments are performed by one person or one company and various inspections are needed. This entails a subjective judgment by the inspector, resulting in different assessment results, poor objectivity and a lack of reliability. Therefore, this study proposed a method to bring about accurate grading results of building conditions. The limitations of visual inspection and condition assessment processes previously conducted were identified by reviewing existing studies. Building defect data was collected using the reverse-engineered three-dimensional (3D) model. The accuracy of the results was verified by comparing them with the actual evaluation results. The results show a 50% time-saving to the same area with an accuracy of approximately 90%. Consequently, defect data with high objectivity and reliability were acquired by measuring the length, area, and width. In addition, the proposed method can improve the efficiency of the building diagnosis process.

3D Printing Characteristics of Automotive Hub using 3D Scanner and Reverse Engineering (3D 스캐너와 역설계를 활용한 자동차용 허브의 프린팅 특성)

  • Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.104-109
    • /
    • 2019
  • Reverse engineering techniques using 3D scanners and 3D printing technologies are being used in various industries. In this paper, the three-dimensional model is designed for automotive hub parts through 3D scanning and reverse engineering, and the design of hub parts is intended to be printed on FDM-style 3D printers to measure and analyze the dimensions of hub parts designed for reverse design and 3D printed hub parts. Experimental result have shown that the dimensions of 3D printed hub parts are small compared to those of the reverse-engineered dimensions, which are due to the shrinkage of filament materials in 3D printing.

3D Printing and Structure Anlaysis of the Submarine Mast Cover (잠수함 마스트 커버의 구조해석 및 3D 프린팅)

  • Jae-Hyeog Woo;Byeong-Joon Cha;Chul-Kyu, Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.937-943
    • /
    • 2023
  • In this study, the mast cover of submarine was reverse engineered and structural analysis was performed. In order to print with the 3D printer, the modeling was reduced to 1/5 size by applying geometric similarity. From the structural analysis results, it was found that the maximum value of equivalent stress generated in the mast cover was 180.9 MPa. This stress value occurs on the inner surface in the major axis. As a result of applying the load condition at a diving depth of 600 m, the mast cover is in a completely elastic state. The 1/5 size model printed on FDM 3D printer with PLA filament was the same as the reverse engineered modeling and it was printed in a perfect shape with no apparent defects. The 1/5 size model printed on PBF 3D printer with SUS316L powder was perfectly manufactured with no apparent defects.

Development of Dress Forms for the Aged Women Based on Their Body Shapes Applying 3D Body Scan Data (3차원 인체 형상을 이용한 실버 여성 패션 산업용 인대 모형 개발)

  • Kim, Soo-A;Choi, Hei-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.1
    • /
    • pp.80-92
    • /
    • 2010
  • This research aims at developing the dress form for the aged women based on their body shapes using the three-dimensional body scan data with the body shape categorization(according to the previous research). To accomplish this goal, the sample group of representative body shape of the 50% of median was selected by using the high frequency proportion range of each type of body shape of the aged women, and the sample group of representative body shape of each type was averaged in a three-dimensional way by using the morphing method of a three-dimension reverse-engineered software. RP in the form of torso was produced based on the shape data of the final model and the data was formed into an actual object, by which an aged women's dress form model was drawn out. The differences of the girth of the bust, hip and waist between the developed dress form model and the existing dress form model were examined. The result showed that the developed dress form had a bigger size of waist girth than that of bust and hip girth, compared to the existing dress form, which shows that it reflects the aged women's tendency of abdomen obesity, so it's expected to be more proper for the human bodies of the targeted age group than the existing dress form. These research results may help design the clothing suitable for the body shape of the aged women so that their demand for the clothing of good fit will be satisfied in the future.

Accuracy of 5-axis precision milling for guided surgical template (가이드 수술용 템플릿을 위한 5축 정밀가공공정의 정확성에 관한 연구)

  • Park, Ji-Man;Yi, Tae-Kyoung;Jung, Je-Kyo;Kim, Yong;Park, Eun-Jin;Han, Chong-Hyun;Koak, Jai-Young;Kim, Seong-Kyun;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.294-300
    • /
    • 2010
  • Purpose: The template-guided implant surgery offers several advantages over the traditional approach. The purpose of this study was to evaluate the accuracy of coordinate synchronization procedure with 5-axis milling machine for surgical template fabrication by means of reverse engineering through universal CAD software. Materials and methods: The study was performed on ten edentulous models with imbedded gutta percha stoppings which were hidden under silicon gingival form. The platform for synchordination was formed on the bottom side of models and these casts were imaged in Cone beam CT. Vectors of stoppings were extracted and transferred to those of planned implant on virtual planning software. Depth of milling process was set to the level of one half of stoppings and the coordinate of the data was synchronized to the model image. Synchronization of milling coordinate was done by the conversion process for the platform for the synchordination located on the bottom of the model. The models were fixed on the synchordination plate of 5-axis milling machine and drilling was done as the planned vector and depth based on the synchronized data with twist drill of the same diameter as GP stopping. For the 3D rendering and image merging, the impression tray was set on the conbeam CT and pre- and post- CT acquiring was done with the model fixed on the impression body. The accuracy analysis was done with Solidworks (Dassault systems, Concord, USA) by measuring vector of stopping’s top and bottom centers of experimental model through merging and reverse engineering the planned and post-drilling CT image. Correlations among the parameters were tested by means of Pearson correlation coefficient and calculated with SPSS (release 14.0, SPSS Inc. Chicago, USA) ($\alpha$ = 0.05). Results: Due to the declination, GP remnant on upper half of stoppings was observed for every drilled bores. The deviation between planned image and drilled bore that was reverse engineered was 0.31 (0.15 - 0.42) mm at the entrance, 0.36 (0.24 - 0.51) mm at the apex, and angular deviation was 1.62 (0.54 - 2.27)$^{\circ}$. There was positive correlation between the deviation at the entrance and that at the apex (Pearson Correlation Coefficient = 0.904, P = .013). Conclusion: The coordinate synchronization 5-axis milling procedure has adequate accuracy for the production of the guided surgical template.