• Title/Summary/Keyword: reverse diffusion

Search Result 95, Processing Time 0.027 seconds

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(III) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2326-2336
    • /
    • 1996
  • So most practical combustor is considered to the swirl flame, it is very important to examinate swirl flame structure and combustion characteristics. Recently, attention has been paid to the flame diagnostic by radical luminous intensity. For swirl flame structure and combustion characteristic, reverse flow boundary, temperature, ion current and radical luminous intensity were measured in the double-coaxial swirl combustor which was used principle of multi-annular combustor. This study had three experimental condition, S-type, C-type, SC-type. S-type and C-type flames were formed recirculation zone, but SC-type flame wasn't formed. C-type flame had two recirculation zone. The position with maximum value of ion current and CH-radical, temperature and OH-radical had similarity distribution almost. Therefore, it is possible that the macro structure of flame was measured by radical luminous intensity in the high intensity of turbulent combustion field which was formed by swirl.

A study on the stability of turbulent diffusion flame in double swirl flows (이중선회류중의 난류확산화염의 안정화에 관한 연구)

  • 조용대;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1669-1678
    • /
    • 1990
  • The annular and coaxial swirl flows between which LPG is supplied was selected to study the swirling flames in double co-swirl flows. The objective of this study is to research into the effects of double co-swirl flow conditions on the stability limit, the reverse flow boundary, and the time mean temperature distributions of the swirling flames. The increase of swirl intensity of axial flow makes the stability limit decrease, but the annular swirl flow (SM>0.5) makes stability and swirl intensity of axial flow increase, And the existence of axial swirl flow makes flame intensive and small in size, and this may be applicable to the design of high power compact combustor.

Renewable energy powered membrane systems: inorganic contaminant removal from Australian groundwaters

  • Richards, Laura A.;Richards, Bryce S.;Schafer, Andrea I.
    • Membrane and Water Treatment
    • /
    • v.2 no.4
    • /
    • pp.239-250
    • /
    • 2011
  • A photovoltaic powered ultrafiltration and reverse osmosis system was tested with a number of natural groundwaters in Australia. The objective of this study was to compare system performance at six remote field locations by assessing the impact of water composition and fluctuating energy on inorganic contaminant removal using a BW30-4040 membrane. Solar irradiance directly affected pressure and flow. Groundwater characteristics (including TDS, salts, heavy metals, and pH), impacted other performance parameters such as retention, specific energy consumption and flux. During continual system operation, retention of ions such as $Ca^{2+}$ and $Mg^{2+}$ was high (> 95%) with each groundwater which can be attributed to steric exclusion. The retention of smaller ions such as $NO_3{^-}$ was affected by weather conditions and groundwater composition, as convection/diffusion dominate retention. When solar irradiance was insufficient or fluctuations too great for system operation, performance deteriorated and retention dropped significantly (< 30% at Ti Tree). Groundwater pH affected flux and retention of smaller ions ($NO_3{^-}$ and $F^-$) because charge repulsion increases with pH. The results highlight variations in system performance (ion retention, flux, specific energy consumption) with real solar irradiance, groundwater composition, and pH conditions.

Image Encryption Based on Quadruple Encryption using Henon and Circle Chaotic Maps

  • Hanchinamani, Gururaj;Kulkarni, Linganagouda
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.193-206
    • /
    • 2015
  • In this paper a new approach for image encryption based on quadruple encryption with dual chaotic maps is proposed. The encryption process is performed with quadruple encryption by invoking the encrypt and decrypt routines with different keys in the sequence EDEE. The decryption process is performed in the reverse direction DDED. The key generation for the quadruple encryption is achieved with a 1D Circle map. The chaotic values for the encrypt and decrypt routines are generated by using a 2D Henon map. The Encrypt routine E is composed of three stages i.e. permutation, pixel value rotation and diffusion. The permutation is achieved by: row and column scrambling with chaotic values, exchanging the lower and the upper principal and secondary diagonal elements based on the chaotic values. The second stage circularly rotates all the pixel values based on the chaotic values. The last stage performs the diffusion in two directions (forward and backward) with two previously diffused pixels and two chaotic values. The security and performance of the proposed scheme are assessed thoroughly by using the key space, statistical, differential, entropy and performance analysis. The proposed scheme is computationally fast with security intact.

The Possibility on Utilization of Underground Pit for Reduction of Cooling and Heating Load (냉방과 난방 부하 감소를 위한 지하피트의 이용 가능성)

  • Cho Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.144-150
    • /
    • 2006
  • The purpose of this study is to predict outlet temperature and humidity through underground pit for the reduction of cooling load and heating load. Commonly, the underground temperature is lower than outdoor in summer but the reverse happens in winter. When the outdoor average air temperature is $25.7^{\circ}C$ during cooling periods, the average outlet air temperature through underground pit is $23.6^{\circ}C$ with 3 m-depth and 60m-length and is $22.2^{\circ}C$ with 3 m-depth and 150 m-length. When the outdoor average air temperature is $4.9^{\circ}C$ during heating periods, the average outlet air temperature through underground pit is $7.7^{\circ}C$ with 3m-depth and 60 m-length and is $10.8^{\circ}C$ with 3 m-depth and 150 m-length. The outlet air temperature is affected by more length than depth of underground pit. The diffusion ratio of outdoor humidity is $-7.7\times10^{-8}kg/s$ in cooling periods and $9.29\times10^{-7}kg/s$ in heating periods.

Formation of Retainted Austenite and Mechanical Properties of 4~8%Mn Hot Rolled TRIP Steels (4~8%Mn 열연 TRIP강의 잔류오스테나이트 생성과 기계적 성질)

  • Kim D. E.;Park Y. K.;Lee O. Y.;Jin K. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.115-120
    • /
    • 2005
  • The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The $4\~8\%$ Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and furnace cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $625^{\circ}C$ for 6 hrs was about $50\;vol.\%$ in the $8\%Mn$ steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The maximum strength-ductility combination of 40,000 $MPa{\cdot}\%$ was obtained when the $8\%Mn$ steel reversely transformed at $625^{\circ}C$ for 12 hrs. However, it's property was significantly decreased at higher holding temperature of $675^{\circ}C$ resulting from the decrease of ductility.

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF

Effect of Fabrication Processes on the Mechanical Properties of 0.14C-6.5Mn TRIP Steels (0.14C-6.5Mn TRIP강의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, O-Yeon;Ryu, Seong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.431-437
    • /
    • 2001
  • This research was examined the effect of intercritical heat treatment on the mechanical Properties and retained austenite formation in 0.1C-6.5Mn steels for the development of a high strength high ductility steel. using of transformation induced plasticity due to retained austenite. The stability of retained austenite is very important for the good ductility and it depend on diffusion of carbon and manganese during reverse transformation. It is effective to heat treat at$ 645^{\circ}C$ in order to obtain over 30 vol.% of retained austenite. However, it is more desirable to heat treat at $620^{\circ}C$, considering the volume fraction and mechanical stability of retained austenite. The strength-elongation combination in cold rolled steel sheets after reverse transformed at $620^{\circ}C$ for 1hr was about 4000k9/mm7, but it decreased rapidly with increasing holding time at high temperature due to the decrease of ductility. The addition of 1.1%Si in 0.14C-6.5Mn TRIP steel does not improve the mechanical properties and retained austenite formation.

  • PDF

Electroplating of Copper Using Pulse-Reverse Electroplating Method for SiP Via Filling (펄스-역펄스 전착법을 이용한 SiP용 via의 구리 충진에 관한 연구)

  • Bae J. S.;Chang G H.;Lee J. H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.129-134
    • /
    • 2005
  • Electroplating copper is the important role in formation of 3D stacking interconnection in SiP (System in Package). The I-V characteristics curves are investigated at different electrolyte conditions. Inhibitor and accelerator are used simultaneously to investigate the effects of additives. Three different sizes of via are tested. All via were prepared with RIE (reactive ion etching) method. Via's diameter are 50, 75, $100{\mu}m$ and the height is $100{\mu}m$. Inside via, Ta was deposited for diffusion barrier and Cu was deposited fer seed layer using magnetron sputtering method. DC, pulse and pulse revere current are used in this study. With DC, via cannot be filled without defects. Pulse plating can improve the filling patterns however it cannot completely filled copper without defects. Via was filled completely without defects using pulse-reverse electroplating method.

  • PDF

Concentration of Sodium Chloride, Sodium Acetate and Sodium Citrate Solutions by using Polyamide Reverse Osmosis Membrane (폴리아미드 역삼투막을 이용한 염화나트륨, 아세트산나트륨, 구연산나트륨 용액의 농축)

  • Lee, Heungil;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.679-686
    • /
    • 2018
  • Reverse osmosis (RO) concentration of sodium chloride, sodium acetate, and sodium citrate solutions has been performed by polyamide RO membrane. Concentration polarization phenomena was also studied by changing pressure, solute kinds, and initial solution concentration. Pressure effect on permeation flux was that the increase of flux was accompanied by the increase of pressure. Flux increase was observed by the decrease of initial solution concentration. Surface concentration on the RO membrane increases and so flux declines due to the concentration polarization. In the later phase of concentration, concentration polarization effect was decreased by the back diffusion of solute from the polariztion layer. In case of sodium citrate, its large ion size and charge density resulted in the discrepancy between theory and experimental data of concentration polarization. It may be due to electric repulsion on the membrane surface.