• Title/Summary/Keyword: reverse diffusion

Search Result 95, Processing Time 0.037 seconds

Development of Two Dimensional Chloride Ion Penetration Model Using Moving Mesh Technique (Moving Mesh Technique을 이용한 2차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • Most of chloride diffusion models based on finite difference method (FDM) could not express the diffusion in horizontal direction at each elevation. To overcome these weakness, two dimensional chloride ion penetration model based on finite element method (FEM) to be able to combine various multi-physics simultaneously was suggested by introducing moving mesh technique. To avoid the generation of mesh being able to be distorted depending on the relative movement of water level to static concrete, a rectangular type of mesh was intentionally adopted and the total number of meshes was empirically selected. The simulated results showed that the contents of surface chloride decreased following to the increase of elevation in the top part of low sea level, whereas there were no changes in the bottom part of low level. In the DuraCrete model, the diffusion coefficient of splashed zone is generally smaller than submerged zone, whereas the trend of Life365 model is reverse. Therefore, it could be understood that the developed model using moving mesh technique effectively reflects $DuraCrete^{TM}$ model rather than $Life365^{TM}$ model. In the future, the model will be easily expanded to be combined with various multi-physics models considering water evaporation, heat of hydration, irradiation effect of sun and so on because it is based on FEM.

Differential Drying Shrinkage and Autogenous Shrinkage of Concrete at Early Ages (초기재령 콘크리트의 부등건조수축과 자기수축에 관한 연구)

  • 김진근;이칠성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.309-314
    • /
    • 1998
  • The moisture diffusion and self-desiccation cause the differential drying shrinkage and autogenous shrinkage at early ages, respecitvely. Thus total shrinkage strain includes the differential drying shrinkage and self-desiccation shrinkage. Thus in this study the shrinkage strain was measured at various positions in the exposed concrete and in the sealed concrete the self-desiccation shrinkage was measured. In low-strength concrete, the differential drying shrinkage increases very rapidly, but self-desiccation shrinkage is very small. But high-strength concrete shows the reverse result. And the analytical results for differential drying shrinkage were in good agreement with the test results.

  • PDF

Comparisons of Reverse Osmosis and Pervaporation Membrane Processes I. Theoretical Interpretations

  • Rhim, Ji-Won;Lee, Kew-Ho;Huang, Y.M.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.47-48
    • /
    • 1991
  • The pressure in RO leads to a concentration difference across the membrane, while the concentration difference in PVAP across the membrane is achieved by applying a vacuum to the downstream compartment. Therefore, it could be possible to compare this two processes using the solution-diffusion mechanism.

  • PDF

The reliability physics of SiGe hetero-junction bipolar transistors (실리콘-게르마늄 이종접합 바이폴라 트랜지스터의 신뢰성 현상)

  • 이승윤;박찬우;김상훈;이상흥;강진영;조경익
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.239-250
    • /
    • 2003
  • The reliability degradation phenomena in the SiGe hetero-junction bipolar transistor (HBT) are investigated in this review. In the case of the SiGe HBT the decrease of the current gain, the degradation of the AC characteristics, and the offset voltage are frequently observed, which are attributed to the emitter-base reverse bias voltage stress, the transient enhanced diffusion, and the deterioration of the base-collector junction due to the fluctuation in fabrication process, respectively. The reverse-bias stress on the emitter-base junction causes the recombination current to rise, increasing the base current and degrading the current gain, because hot carriers formed by the high electric field at the junction periphery generate charged traps at the silicon-oxide interface and within the oxide region. Because of the enhanced diffusion of the dopants in the intrinsic base induced by the extrinsic base implantation, the shorter distance between the emitter-base junction and the extrinsic base than a critical measure leads to the reduction of the cut-off frequency ($f_t$) of the device. If the energy of the extrinsic base implantation is insufficient, the turn-on voltage of the collector-base junction becomes low, in the result, the offset voltage appears on the current-voltage curve.

Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels (C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향)

  • You J. S;Hong H;Lee O. Y;Jin K. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Analysis Technique for Chloride Penetration using Double-layer and Time-Dependent Chloride Diffusion in Concrete (콘크리트내의 이중구조와 시간의존성을 고려한 염화물 해석기법의 개발)

  • Mun, Jin-Man;Kim, Jin-Yeong;Kim, Young-Joon;Oh, Gyeong-Seok;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.83-91
    • /
    • 2015
  • With varying conditions of concrete surface, induced chloride contents are changed and this is a key parameter for steel corrosion and service life in RC (Reinforced Concrete) structures. Many surface enhancement techniques using impregnation have been developed, however the evaluation techniques for chloride behavior through doubly layered media and time-dependent diffusion are rarely proposed. This paper presents an analysis technique considering double-layer concrete and time-dependent diffusion behavior, and the results are compared with those from the previous test results through reverse analysis. The chloride profiles from the surface-impregnated concrete exposed to atmospheric, tidal, submerged zone for 2 years are adopted. Furthermore surface chloride contents and diffusion coefficients are obtained, and are compared with those from Life365. Through consideration of time effect, the relative error decreases from 0.28 to 0.20 in atmospheric, 0.29 to 0.11 in tidal, and 0.54 to 0.40 in submerged zone, respectively, which shows more reasonable results. Utilizing the diffusion coefficients from Life365, relative errors increases and it needs deeper penetration depth (e) and lower diffusion coefficient ratio ($D_1/D_2$) due to higher diffusion coefficient.

Effect of Gas Diffusion Layer Property on PEMFC Performance (기체확산층 물성이 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.568-574
    • /
    • 2020
  • Gas diffusion layer (GDL) is one of the main components of PEMFC as a pathway of reactants from a flow field to an electrode, water transport in reverse direction, heat management and structural support of MEA. In this study, the effect of GDL on fuel cell performance was investigated for commercial products such as 39BC and JNT30-A3. Polarization curve measurements were performed at different flow rates and relative humidity conditions using 25 ㎠ unit cell. The parameters on operating conditions were calculated using an empirical equation. The electrical resistance increased as the GDL PTFE content increased. The crack of microporous layer had influence on the concentration loss as water pathway. In addition, the ohmic resistance increased as the relative humidity decreased, but decreased as the current density increased due to water formation. Curve fitting analysis using the empirical equation model was applied to identify the tendency of performance parameters on operating conditions for the gas diffusion layer.

Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length (확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구)

  • Lee, Byung-Kyu;Jang, Jae-Kil;Jeong, Jee-Yeon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

Oxidation Process of GaN Schottky Diode for High-Voltage Applications (고전압 응용분야를 위한 GaN 쇼트키 다이오드의 산화 공정)

  • Ha, Min-Woo;Han, Min-Koo;Hahn, Cheol-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2265-2269
    • /
    • 2011
  • 1 kV high-voltage GaN Schottky diode is realized using GaN-on-Si template by oxidizing Ni-Schottky contact. The Auger electron spectroscopy (AES) analysis revealed the formation of $NiO_x$ at the top of Schottky contact. The Schottky contact was changed to from Ni/Au to Ni/Ni-Au alloy/Au/$NiO_x$ by oxidation. Ni diffusion into AlGaN improves the Schottky interface and the trap-assisted tunneling current. In addition, the reverse leakage current and the isolation-leakage current are efficiently suppressed by oxidation. The isolation-leakage current was reduced about 3 orders of magnitudes. The reverse leakage current was also decreased from 2.44 A/$cm^2$ to 8.90 mA/$cm^2$ under -100 V-biased condition. The formed group-III oxides ($AlO_x$ and $GaO_x$) during the oxidation is thought to suppress the surface leakage current by passivating surface dangling bonds, N-vacancies and process damages.