• Title/Summary/Keyword: retrofitting

Search Result 517, Processing Time 0.03 seconds

Retrofit Performance of Artificially Perforated Shearwall by Retrofit Method (보강기법에 따른 개구부가 있는 전단벽의 보강효과 규명)

  • Choi, Hyun-Ki;Lee, Jin-Ah;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.29-32
    • /
    • 2008
  • The renewal of existing buildings rather than new construction has increased due to it's cost effective characteristics. Remodeling is also an environmentally-friendly approach that reduces the amount of waste in construction site. Remodeling can sometimes include partial destruction of the structural members of a building. In addition it is important that the buildings under going remodeling retrofitted to make themselves stable and meet up with the future demands for better structural performance. The objective of this paper is to present the test results and structural behavior of RC walls that are perforated and to introduce effective retrofitting methods by evaluating efficacy of passive retrofit and active retrofit. Passive retrofit and Active retrofit using carbon fiber sheets, steel plates and wire that are widely used for strengthening the main members of existing buildings. The test results showed that the failed specimens had shear fractures and that two different types of retrofit method had different effects on the strengths of each specimen.

  • PDF

Network vision of disaster prevention management for seashore reclaimed u-City (해안매립 신도시의 재해 예방관리 네트워크 비젼)

  • Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.117-129
    • /
    • 2009
  • This paper studied the safety management network system of infrastructure which constructed smart sensors, closed-circuit television(CCTV) and monitoring system. This safety management of infrastructure applied to bridge, cut slop and tunnel, embankment etc. The system applied to technologies of standardization guidelines, data acquirement technologies, data analysis and judgment technologies, system integration setup technology, and IT technologies. It was constructed safety management network system of various infrastructure to improve efficient management and operation for many infrastructure. Integrated safety management network system of infrastructure consisted of the real-time structural health monitoring system of each infrastructure, integrated control center, measured data transmission using i of tet web-based, collecting data using sf ver, early alarm system which the dangerous event of infrastructure occurred. Integrated control center consisted of conference room, control room to manage and analysis the data, server room to present the measured data and to collect the raw data. Early alarm system proposed realization of warning and response within 5 minute or less through development of sensor-based progress report and propagation automation system using the media such as MMS, VMS, EMS, FMS, SMS and web services of report and propagation. Based on this, the most effective u-Infrastructure Safety Management System is expected to be stably established at a less cost, thus making people's life more comfortable. Information obtained from such systems could be useful for maintenance or structural safety evaluation of existing structures, rapid evaluation of conditions of damaged structures after an earthquake, estimation of residual life of structures, repair and retrofitting of structures, maintenance, management or rehabilitation of historical structures.

  • PDF

A Methodology for Monitoring Prestressed Force of Bridges Using OFS-embedded Stand (광섬유센서가 내장된 강연선을 이용한 교량의 장력 모니터링 방법)

  • Kim, Jae-Min;Kim, Hyun-Woo;Kim, Young-Sang;Kim, Jin-Won;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-294
    • /
    • 2008
  • This study proposes a novel method for in service evaluation of tension force of a prestressed 7-wire strand which is frequently employed for retrofitting bridge superstructure. The smart strand is made by replacing the straight king wire of the strand with an instrumented steel tube in which the FBG sensor is embedded. Since the strain of the smart strand can easily be measured using the sensor, it is possible to monitor tension force of the strand during the service. For the sake of demonstrating effectiveness of the proposed strand, we came up with a 7.0m long prototype with 2 FBG sensors, and it is applied as an external tendon to a 6.4m long and 0.6 high RC T-shaped beam. A loading-unloading test has been carried out, and estimated tension forces using the smart strand are compared with measured forces by load cell. The comparison showed that the proposed smart tendon is useful and accurate for monitering tension force of the prestressed tendon.

Retrofitting of vulnerable RC structures by base isolation technique

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Ahmmad, Rasel;Darain, Kh. Mahfuz ud
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.603-623
    • /
    • 2015
  • The scale and nature of the recent earthquakes in the world and the related earthquake disaster index coerce the concerned community to become anxious about it. Therefore, it is crucial that seismic lateral load effect will be appropriately considered in structural design. Application of seismic isolation system stands as a consistent alternative against this hazard. The objective of the study is to evaluate the structural and economic feasibility of reinforced concrete (RC) buildings with base isolation located in medium risk seismic region. Linear and nonlinear dynamic analyses as well as linear static analysis under site-specific bi-directional seismic excitation have been carried out for both fixed based (FB) and base isolated (BI) buildings in the present study. The superstructure and base of buildings are modeled in a 3D finite element model by consistent mass approach having six degrees of freedom at each node. The floor slabs are simulated as rigid diaphragms. Lead rubber bearing (LRB) and High damping rubber bearing (HDRB) are used as isolation device. Change of structural behaviors and savings in construction costing are evaluated. The study shows that for low to medium rise buildings, isolators can reduce muscular amount of base shears, base moments and floor accelerations for building at soft to medium stiff soil. Allowable higher horizontal displacement induces structural flexibility. Though incorporating isolator increases the outlay, overall structural cost may be reduced. The application of base isolation system confirms a potential to be used as a viable solution in economic building design.

Strengthening of steel-concrete composite beams with composite slab

  • Subhani, Mahbube;Kabir, Muhammad Ikramul;Al-Amer, Riyadh
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.91-105
    • /
    • 2020
  • Steel-concrete composite beam with profiled steel sheet has gained its popularity in the last two decades. Due to the ageing of these structures, retrofitting in terms of flexural strength is necessary to ensure that the aged structures can carry the increased traffic load throughout their design life. The steel ribs, which presented in the profiled steel deck, limit the use of shear connectors. This leads to a poor degree of composite action between the concrete slab and steel beam compared to the solid slab situation. As a result, the shear connectors that connects the slab and beam will be subjected to higher shear stress which may also require strengthening to increase the load carrying capacity of an existing composite structure. While most of the available studies focus on the strengthening of longitudinal shear and flexural strength separately, the present work investigates the effect of both flexural and longitudinal shear strengthening of steel-concrete composite beam with composite slab in terms of failure modes, ultimate load carrying capacity, ductility, end-slip, strain profile and interface differential strain. The flexural strengthening was conducted using carbon fibre reinforced polymer (CFRP) or steel plate on the soffit of the steel I-beam, while longitudinal shear capacity was enhanced using post-installed high strength bolts. Moreover, a combination of both the longitudinal shear and flexural strengthening techniques was also implemented (hybrid strengthening). It is concluded that hybrid strengthening improved the ultimate load carrying capacity and reduce slip and interface differential strain that lead to improved composite action. However, hybrid strengthening resulted in brittle failure mode that decreased ductility of the beam.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Database Design for Development of the GIS-based Earthquake Damage Evaluation System of Highway Bridges (도로교의 GIS 기반 지진피해평가체계 구축을 위한 데이터베이스 설계)

  • Lee, Sang-Ho;Kim, Bong-Geun;Jeong, Dong-Gyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.135-147
    • /
    • 2006
  • The essential information elements for the Earthquake Damage Evaluation System (EDES) of highway bridges are defined in this study, and a database construction method, which fits the circumstances of Korea, is proposed. The information elements for the EDES of highway bridges are categorized in two groups: structure related information, location related information. The structure related information is composed of the fragility curve information which is necessary for earthquake damage evaluation of highway bridges. The data structure of road network, which represents the location related information, is defined in more detail than the existing GIS-based data structure of road network for modeling of junctions. A pilot GIS-based EDES subjected to 110 bridges on expressway in Korea is developed, and it is verified that the proposed database construction method for the EDES can be used to develop a decision making system for quick retrofitting of the seismic damages of highway bridges and road network.

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

The Consideration of the Necessity of Seismic Retrofitting for Existing High Speed Rail Bridge in Accordance with Design Guidelines Improvements (설계기준 개선에 따른 기존 고속철도 교량 내진보강 필요성 고찰)

  • Kim, Do-Kyoun;Jang, Han-Teak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.445-453
    • /
    • 2013
  • This paper was calculated the earthquake load using ELFP(Equivalent Lateral Force Procedure) and RSA(Response Spectrum Analysis) for PSC Box Girder representative bridges by the Phase of KTX designed by ELFP and verified the difference of these analyses. It have been modeled 3 dimensional FE model of 5 bridges using a commercial FEM program for the comparison of these analyses using a commercial FEM program and were compared the earthquake load. It has been to confirm the increase of the difference ELFP of RSA calculated to seismic ground acceleration according to the ground condition and natural period. It is mean that the necessity of seismic reinforcement due to the application of a larger of earthquake load than designed earthquake load form the seismic performance evaluation result according to the difference of calculated earthquake loads.