• Title/Summary/Keyword: retrofit method

검색결과 272건 처리시간 0.094초

기존 철근콘크리트 건물과 내진보강요소의 접합부 충진을 위한 뿜칠형 섬유보강 시멘트 복합체(SHCC)의 개발 (Development of Sprayable Strain-Hardening Cement Composite(SHCC) for Joint between Existing R/C Building and Seismic Retrofit Elements)

  • 김성호;윤길호;김용철;김재환;윤현도
    • 교육시설 논문지
    • /
    • 제19권5호
    • /
    • pp.29-36
    • /
    • 2012
  • The goals of this study are to develop a sprayable strain-hardening cement composite (SHCC) and to investigate the potential of the sprayable SHCC for packing the joint between existing R/C building and seismic retrofit elements. This paper provides the procedure for the development of a sprayable SHCC, test results of fresh properties required to a sprayable SHCC, and mock-up test results of developed sprayable SHCC. Control mixture of polyvinyl alcohol (PVA) fiber-reinforced SHCC (PVA-SHCC) was predetermined based on available research results. The pumpability and sprayability of the SHCC mixture were depended on the fluid property of fresh SHCC mixture. In this study, the effects of admixtures such as AE agent and fly ash on the rheological and rebound properties of control SHCC mixture were investigated to determine a sprayable SHCC mixture. Flow values and air content during shotcreting procedure of sprayable SHCC were also evaluated. The results show that flow or flowability and amount of air of three SHCC mixtures decreased almost linearly according to shotcreting procedure from mixer to nozzle. And the pumpability and sprayability of mixture with AE agent and low amounts of fly ash were superior to the those of SHCC. Mock-up test result show that developed sprayable SHCC indicates much improved workability and shotcrete construction period than conventional method(nonshrinkage mortar).

모델링 기반의 선회와류식 SBR 공법이 적용된 하수처리장 및 마을하수도 동절기 총인 개선방안 연구 (Analysis on Retrofit Method to Improve TP treatment efficiency in Air-vent SBR process installed MWTP and RCSTP during winter based on Modeling)

  • 이현섭;임지열;길경익
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.251-256
    • /
    • 2019
  • 상수원의 상류 및 인근 지역의 경우, 개발 제한으로 인해 상대적으로 하수도 보급률이 낮은 지역이 많다. 이는 지속적으로 상수원 오염에 영향 미치며 이를 방지하기 위한 방안으로 하수도 보급 및 기존 시설의 개선 등의 방안이 제시되고 있다. 본 연구에서는 안동댐과 임하댐 상류에 위치하고 있으며, 선회와류식 SBR공법이 도입된 A하수처리장 모델링을 통해 동절기 마을하수도 방류수 수질 개선 방안을 마련하기 위한 연구를 실시하였다. 5년(2012년 ~ 2016년)간의 운전자료를 바탕으로 모델 구축·검증을 실시하였다. 모델링 결과, SRT 조절을 통해 동절기 방류수 수질 개선이 가능할 것으로 분석되었으며, 각 방류수 수질 기준 별 개선 효과는 BOD 1.8%, COD 54.5%, SS 4.3%, T-N 0.8%, T-P 7.7%로 나타났다. 본 연구를 통해 도출된 동절기 하수처리장 방류수 수질 개선을 위한 방안은 유사한 공법이 도입된 하수처리장 및 마을하수도의 운영 개선방안으로 활용될 수 있을 것으로 판단된다.

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • 국제초고층학회논문집
    • /
    • 제5권3호
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

소형 경유 운행차의 매연여과장치 재생용 촉매연소기 개발에 관한 연구 (Development of a Catalytic Combustor for DPF Regeneration of In-use Light Duty Diesel Vehicles)

  • 김홍석;최현하;조규백;정용일;조성호;박종수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.168-175
    • /
    • 2008
  • In-use light duty diesel vehicles are considered as one of major sources of particulate emissions in many cities, and the start of the retrofit program for the light duty diesel vehicles is expected in near future in Korea. One of the problems of the retrofit of the light duty diesel vehicles is that the exhaust gas temperature is too low to apply passive regeneration DPF systems. This study introduces a catalytic combustor as a new active DPF regeneration technology. This study shows the principle and characteristics of DPF regeneration by the catalytic combustor and suggests it's proper control method for better regeneration.

PSC 부재의 성능개선기법에 관한 정적 실험 연구 - 유리섬유 부착 공법과 외부 후긴장 보강 공법 - (A Study on Strengthening of PSC Beam by Static Experiment - Glass fiber sheeting and External post-tensioning methods -)

  • 김현호;송재필;김기봉;정영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.157-163
    • /
    • 2003
  • Recently, the number of Prestressed Concrete(PSC) bridges needed repair and retrofit because of the increase of heavy traffic loads and aging of concrete materials. But there are a few related researches about strengthening PSC bridges. In this study, the practicability of strengthening methods for PSC beam were studied by the static experimental method. PSC beams in length of 6m were made with concrete slabs. Glass fiber sheeting and external post-tensioning methods were used for strengthening PSC beams. Some beams were strengthened after cracks to investigate the applicability for cracked bridges. As a result, there strengthening methods were efficient at increasing the cracking loads and the failure load, to decrease deflection and prevent cracks. In the case of using glass fiber retrofit methods, it should be careful in the anchorage problems for preventing the bonding failure.

Seismic performance improvement of RC buildings with external steel frames

  • Ecemis, Ali Serdar;Korkmaz, Hasan Husnu;Dere, Yunus
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.343-353
    • /
    • 2021
  • In this study, in order to improve the seismic performance of existing reinforced concrete (RC) framed structures, various external attachment of corner steel frame configurations was considered as a user-friendly retrofitting method. The external steel frame is designed to contribute to the lateral stiffness and load carrying capacity of the existing RC structure. A six-story building was taken into account. Four different external corner steel frame configurations were suggested in order to strengthen the building. The 3D models of the building with suggested retrofitting steel frames were developed within ABAQUS environment using solid finite elements and analyzed under horizontal loadings nonlinearly. Horizontal top displacement vs loading curves were obtained to determine the overall performance of the building. Contributions of steel and RC frames to the carried loads were computed individually. Load/capacity ratios for the ground floor columns were presented. In the study, 3D rendered images of the building with the suggested retrofits are created to better visualize the real effect of the retrofit on the final appearance of the façade of the building. The analysis results have shown that the proposed external steel frame retrofit configurations increased the lateral load carrying capacity and lateral stiffness and can be used to improve the seismic performance of RC framed buildings.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

연속지진에 대한 지진 취약 철근콘크리트 건축물의 FRP 재킷 보수 전략 연구 (Repair Scheme of FRP Column Jacketing System for Seismically-vulnerable RC Buildings under Successive Earthquakes)

  • 김수빈;김혜원;박재은;신지욱
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.79-90
    • /
    • 2023
  • Existing reinforced concrete (RC) frame buildings have seismic vulnerabilities because of seismically deficient details. In particular, since cumulative damage caused by successive earthquakes causes serious damage, repair/retrofit rehabilitation studies for successive earthquakes are needed. This study investigates the repair effect of fiber-reinforced polymer jacketing system for the seismically-vulnerable building structures under successive earthquakes. The repair modeling method developed and validated from the previous study was implemented to the building models. Additionally, the main parameters of the FRP jacketing system were selected as the number of FRP layers associated with the confinement effects and the installation location. To define the repair effects of the FRP jacketing system with the main parameters, this study conducted nonlinear time-history analyses for the building structural models with the various repairing scenarios. Based on this investigation, the repair effects of the damaged building structures were significantly affected by the damage levels induced from the mainshocks regardless of the retrofit scenarios.

Finite element modeling of pre-damaged beam in concrete frame retrofitted with ultra high performance shotcrete

  • Xuan-Bach Luu
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.121-136
    • /
    • 2024
  • In recent times, there has been a growing need to retrofit and strengthen reinforced concrete (RC) structures that have been damaged. Numerous studies have explored various methods for strengthening RC beams. However, there is a significant dearth of research investigating the utilization of ultra-high-performance concrete (UHPC) for retrofitting damaged RC beams within a concrete frame. This study aims to develop a finite element (FE) model capable of accurately simulating the nonlinear behavior of RC beams and subsequently implementing it in an RC concrete frame. The RC frame is subjected to loading until failure at two distinct degrees, followed by retrofitting and strengthening using Ultra high performance shotcrete (UHPS) through two different methods. The results indicate the successful simulation of the load-displacement curve and crack patterns by the FE model, aligning well with experimental observations. Novel techniques for reinforcing deteriorated concrete frame structures through ABAQUS are introduced. The second strengthening method notably improves both the load-carrying capacity and initial stiffness of the load-displacement curve. By incorporating embedded rebars in the frame's columns, the beam's load-carrying capacity is enhanced by up to 31% compared to cases without embedding. These findings indicate the potential for improving the design of strengthening methods for damaged RC beams and utilizing the FE model to predict the strengthening capacity of UHPS for damaged concrete structures.

기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법 (ML-based Allowable Axial Loading Estimation of Existing RC Building Structures)

  • 황희진;오근영;강재도;신지욱
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.