• Title/Summary/Keyword: retrofit costs

Search Result 29, Processing Time 0.024 seconds

Seismic retrofit of a framed structure using damped cable systems

  • Naeem, Asad;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2018
  • The purpose of this study is to investigate the effectiveness of damped cable systems (DCS) to mitigate the earthquake-induced responses of a building frame structure. The seismic performance of the DCS is investigated using the fragility analysis and life cycle cost evaluation of an existing building retrofitted with the DCS, and the results are compared with the structure retrofitted with conventional fluid viscous dampers. The comparison of the analysis results reveals that, due to the self-centering capability of the DCS, residual displacement approximately reaches to zero for the structure retrofitted with the DCS. The fragility analysis shows that the structure retrofitted with the DCS has the least probability of reaching the specific limit states compared to the bare structure and the structure with the conventional fluid viscous damper (VD), especially under the severe ground motions. It is also observed that both the initial and the life cycle costs of the DCS seismic retrofitting technique is lesser compare to the structure retrofitted with the VD.

The Effectiveness of New Power Generation and Energy Demand Reduction to Achieve Greenhouse Gas Reduction Goals in Building Area

  • Park, Seong-Cheol;Kim, Hwan-Yong;Song, Young-Hak
    • Architectural research
    • /
    • v.18 no.2
    • /
    • pp.59-64
    • /
    • 2016
  • Since the massive power outages that hit across the nation in September 2011, a growing imbalance between energy supply and demand has led to a severe backup power shortage. To overcome the energy crisis which is annually repeated, a policy change for deriving energy supply from renewable energy sources and a demand reduction strategy has become essential. Buildings account for 18% of total energy consumption and have great potential for energy efficiency improvements; it is an area considered to be a highly effective target for reducing energy demand by improving buildings' energy efficiency. In this regard, retrofitting buildings to promoting environmental conservation and energy reduction through the reuse of existing buildings can be very effective and essential for reducing maintenance costs and increasing economic output through energy savings. In this study, we compared the energy reduction efficiency of national power energy consumption by unit production volume based on thermal power generation, renewable energy power generation, and initial and operating costs for a building retrofit. The unit production was found to be 13,181GWh/trillion won for bituminous coal-fired power generation, and 5,395GWh/trillion won for LNG power generation, implying that LNG power generation seemed to be disadvantageous in terms of unit production compared to bituminous coal-fired power generation, which was attributable to a difference in unit production price. The unit production from green retrofitting increased to 38,121GWh/trillion won due to the reduced energy consumption and benefits of greenhouse gas reduction costs. Renewable energy producing no greenhouse gas emissions during power generation and showed the highest unit production of 75,638GWh/trillion won, about 5.74 times more effective than bituminous coal-fired power generation.

Fabricating retrofit crowns to an existing removable partial denture by CAD-CAM: a case report (CAD-CAM을 이용한 RPD 지대치의 retrofit crown 제작 증례)

  • Hyuksoon Lee;Seong-A Kim;Joo-Hyuk Bang;Sung Yong Kim;Hee-Won Jang;Keun-Woo Lee;Yong-Sang Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • Removable partial denture wearers are exposed to the risks that remaining teeth get damaged by caries, attritions, erosion, and fracture. In the case of damaged abutment tooth which should fit to Removable partial denture (RPD), the fabrication of surveyed crown is followed by the making of RPD. However, making new denture takes a long time, and needs several processes and costs. Also, patients should get used to new denture. If other abutment teeth and edentulous ridges provide the existing denture with support, retention, and stability, use of existing denture is considered clinically acceptable. In this situation, fabricating retrofit crowns to an existing removable partial denture makes patient use existing denture, cuts costs, and reduces discomfort. In this case, severely worn teeth were restored using monolithic zirconia crown which fit to an existing removable partial denture by CAD-CAM. Moreover, support, retention, and stability of the denture were improved, and both doctor and patient were satisfied with the result.

Seismic multi-level optimization of dissipative re-centering systems

  • Panzera, Ivan;Morelli, Francesco;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • Seismic resilience is a key feature for buildings that play a strategic role within the community. In this framework, not only the structural and non-structural elements damage but also the protracted structural dysfunction can contribute significantly to overall seismic damage and post-seismic crisis situations. Reduction of the residual and peak displacements and energy dissipation by replaceable elements are some effective aspects to pursue in order to enhance the resilience. Control systems able to adapt their response based on the nature of events, such as active or semi-active, can achieve the best results, but also require higher costs and their complexity jeopardizes their reliability; on the other hand, a passive control system is not able to adapt but its functioning is more reliable and characterized by lower costs. In this study it is proposed a strategy for the optimization of the dissipative capacity of a seismic resistant system obtained placing in parallel two different groups dissipative Re-Centering Devices, specifically designed to enhance the energy dissipation, one for the low and the other for the high intensity earthquakes. In this way the efficiency of the system in dissipating the seismic energy is kept less sensitive to the seismic intensity compared to the case of only one group of dissipative devices.

Comparative Economic Analysis on SOx Scrubber Operation for ECA Sailing Vessel

  • Jee, Jae-hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.262-268
    • /
    • 2020
  • The IMO (International Maritime Organization) has mandated the restriction of SOx emissions to 0.5 % for all international sailing vessels since January 2020. And, a number of countries have designated emission control areas for stricter environmental regulations. Three representative methods have been suggested to cope with these regulations; using low-sulphur oil, installing a scrubber, or using LNG (Liquefied Natural Gas) as fuel. In this paper, economic analysis was performed by comparing the method of installing a scrubber with the method of using low-sulphur oil without installing additional equipment. We suggested plausible layouts and compared the pros and cons of dif erent scrubber types for retrofitting. We selected an international sailing ship as the target vessel and estimated payback time and benefits based on navigation route, fuel consumption, and installation and operation costs. Two case of oil prices were analyzed considering the uncertainty of fuel oil price fluctuation. We found that the expected payback time of investment varies from 1 year to 3.5 years depending on the operation ratio of emission control areas and the fuel oil price change.

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

Life-Cycle Cost Optimization for Steel Box Girder Bridges (강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.128-136
    • /
    • 2001
  • This paper presents an optimum deck and girder system design for minimizing the life-cycle cost (LU) of steel box girder bridges. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and crack. To demonstrate the effect of LCC optimum design of steel box girder bridges, the LCC optimum design is compared with conventional design method for steel box girder bridges design. From the numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on LCC will lead to more rational, economical and safer design.

  • PDF

Optimization of Heat Exchanger Network in the Steam Assisted Gravity Drainage Process Integration

  • Rho, Seon-Gyun;Yuhang, Zhang;Hwang, InJu;Kang, Choon-Hyoung
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.260-269
    • /
    • 2020
  • The Steam Assisted Gravity Drainage (SAGD) process is an enhanced method to extract oil from bitumen which involves surface and central process facilities. This paper describes the Central Process Facilities (CPF) of SAGD and proposes several retrofit plans to the Heat Exchanger Network (HEN). In this approach, the process integration scheme is applied to estimate the energy saving in HENs, and various cases are modeled in favor of a commercial simulator. Throughout this work, a minimum approach temperature of 10℃ is assumed. The results reveal that, due to the HEN optimization using process integration, the heating and cooling duties can be reduced to 29.68MW and 1.886MW, respectively. Compared with the Husky case, all cases considered in this study indicate a potential reduction of at least 6% in total cost, including investment and operation costs.

Extracting Seismic Reinforcement Priorities to Promote Safety at Airmen Dormitories Using DEA (DEA 기법을 이용한 공군 병영생활관 내진보강 우선순위 도출)

  • Park, Keunwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.697-704
    • /
    • 2019
  • The public has grown more anxious towards domestic earthquakes that have been taking place since 2000, and regulations on seismic design has been strengthened. Out of 4,605 Air Force installations that require the application of seismic design, 2,982 remain unapplied. By taking budget issues and the time spent to implement seismic retrofit into account, this paper aims to list up seismic reinforcement priorities for airmen dormitories where they can potentially be most vulnerable to earthquakes. The priorities are extracted based on Data Envelope Analysis(DEA). To apply DEA, two sets of variables are set: seismic reinforcement costs as input variable: age of building, number of residents, and seismic load as output variables. At the end, suggestions are made for developing seismic reinforcement plans that can be applied to all Air Force installations.

Optimum Life-cycle Cost Design of Orthotropic Steel Deck Bridges (강상판교의 생애주기비용 최적설계)

  • Cho, Hyo Nam;Min, Dae Hong;Lee, Kwang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.337-349
    • /
    • 2001
  • This study present an optimum deck and girder system design for minimizing the life-cycle cost (LCC) of orthotropic steel deck bridges. The problem of optimum LCC design of orthotropic steel deck bridges is formulated as that of minimization of the expected total LCC that consists of initial cost, maintenance cost, expected retrofit costs for strength, deflection, and fatigue. To demonstrate the effect of LCC optimum design of orthotropic steel deck bridges, the proposed optimum LCC design is compared with the conventional method for orthotropic steel deck bridges design. From the numerical investigations, it may be positively stated that the proposed optimum design procedure for orthotropic steel deck bridges based on the LCC will lead to more rational, economical and safer design.

  • PDF