• Title/Summary/Keyword: retinal degeneration

Search Result 73, Processing Time 0.027 seconds

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.

The Effect of Brown Tinted or UV-A blocking Ophthalmic Lens Against the Photooxidation of A2E, a Lipofuscin in Retina (망막 내 노인성 형광색소의 광산화에 미치는 Brown 착색렌즈와 UV-A 차단 안경렌즈의 영향)

  • Park, Sang-Il
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • Purpose: This purpose of study is to investigate the effect of UV-A-blocking or brown-tinted ophthalmic lens against A2E photooxidation which known as one of the etiologies of AMD(Age-related macular degenaration). Methods: The photooxidation of A2E, synthetic product of two molecules of all-trans-retinal and ethanolamine, was induced by the exposure to blue light (420~470 nm, $94mW/cm^2$) for 3 minutes. The inhibitory effect of UVblocking or brown-tinted ophthalmic lens against A2E photooxidation was evaluated by UV absorbance and HPLC analysis of remained A2E after the exposure to blue light. Results: UV-blocking ophthalmic lens could not inhibit A2E photooxidation induced by blue light irradiation. There was no difference in A2E photooxidation in the presence of brown-tinted ophthalmic lens to block 15% of visible ray, however, those lenses blocking 55% or 86% of visible ray showed the inhibitory effect of A2E photooxidation as 9.98% and 16.55%, respectively. By HPLC analysis, the amount of residual A2E which was not blocked by any lens was $199.29{\pm}26.53{\mu}M$, however, the inhibitory effect against A2E photooxidation was shown in the presence of brown-tinted lens. The remained A2Es were $264.58{\pm}31.91{\mu}M$ and $402.93{\pm}28.68{\mu}M$ in brown-tinted lenses of 55% and 86% blocking visible ray, respectively. However, there was no inhibitory effect against A2E photooxidation in the case of UV-blocking lens by HPLC analysis. Conclusions: In this study, brown-tinted ophthalmic lens was confirmed to have the inhibitory effect against the photooxidation of A2E, a causing substance of AMD onset.

Blue-light Induces the Selective Cell Death of Photoreceptors in Mouse Retina (청색광에 의한 마우스 망막손상에서 선택적 광수용세포의 사멸)

  • Kang, Seo-young;Hong, Ji Eun;Choi, Eun jung;Lyu, Jungmook
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2016
  • Purpose: The study was conducted to determine that photoreceptors of mouse having pigment in RPE(retinal pigment epithelium) can be damaged by blue-light and apoptosis of specific cells among photoreceptors are induced by blue-light, and to assist the investigation of AMD(Age-related macular degeneration) mechanisms and development of AMD drugs. Methods: C57Black mice were injured by irradiating $2800{\pm}10lux$ of 463 nm LED for 6 hours after 24 hours dark adaptation and eyes were enucleated 1, 3, 7 days. Damage of retina induced by blue-light was determined by western blotting GFAP(Glial fibrillary acidic protein) expression. In the light-injured retina, cell death of photoreceptors was determined by TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. ERK(Extracellular signal-regulated kinases), JNK, and SRC(sarcoma) expression were assessed by western blotting to determine regulated pathway. Blue light-injured retina were immunostained with antibodies against Opsin and Rhodopsin as markers of photoreceptors to compared the damage cone cells with rod cells. Results: After 1, 3 and 7 days from exposure to blue-light, thickness of retina was more decreased than control, and more decreased at nuclear layer than at outer plexiform layer and GFAP expression was increased day 1 after blue-light injured. While phosphorylated ERK and SRC protein expressions at day 1 were increased after blue-light injured, phosphorylated c-JUN was decreased. Fluorescence intensity analysis showed that markers of cone and rod cells were decreased after blue-light injured and Opsin was more decreased than Rhodopsin. Conclusions: The study suggests possibilities that the blue-light promotes retinal damage and causes apoptotic cell death via ERK and SRC pathway in mouse retina, and blue-light retinal damage is more induced cone cells apoptosis than rod cells directly.

Utilizing cell-free DNA to validate targeted disruption of MYO7A in rhesus macaque pre-implantation embryos

  • Junghyun Ryu;Fernanda C. Burch;Emily Mishler;Martha Neuringer;Jon D. Hennebold;Carol Hanna
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.292-297
    • /
    • 2022
  • Direct injection of CRISPR/Cas9 into zygotes enables the production of genetically modified nonhuman primates (NHPs) essential for modeling specific human diseases, such as Usher syndrome, and for developing novel therapeutic strategies. Usher syndrome is a rare genetic disease that causes loss of hearing, retinal degeneration, and problems with balance, and is attributed to a mutation in MYO7A, a gene that encodes an uncommon myosin motor protein expressed in the inner ear and retinal photoreceptors. To produce an Usher syndrome type 1B (USH1B) rhesus macaque model, we disrupted the MYO7A gene in developing zygotes. Identification of appropriately edited MYO7A embryos for knockout embryo transfer requires sequence analysis of material recovered from a trophectoderm (TE) cell biopsy. However, the TE biopsy procedure is labor intensive and could adversely impact embryo development. Recent studies have reported using cell-free DNA (cfDNA) from embryo culture media to detect aneuploid embryos in human in vitro fertilization (IVF) clinics. The cfDNA is released from the embryo during cell division or cell death, suggesting that cfDNA may be a viable resource for sequence analysis. Moreover, cfDNA collection is not invasive to the embryo and does not require special tools or expertise. We hypothesized that selection of appropriate edited embryos could be performed by analyzing cfDNA for MYO7A editing in embryo culture medium, and that this method would be advantageous for the subsequent generation of genetically modified NHPs. The purpose of this experiment is to determine whether cfDNA can be used to identify the target gene mutation of CRISPR/Cas9 injected embryos. In this study, we were able to obtain and utilize cfDNA to confirm the mutagenesis of MYO7A, but the method will require further optimization to obtain better accuracy before it can replace the TE biopsy approach.

The Retrospective Study of 463 Patients who had Funduscopy Examination at Korean Medicine Ophthalmology (한방 안과에 내원하여 안저 검사를 시행한 환자 463명에 대한 후향적 연구 보고)

  • Lee, Ma-Eum;Jeong, Mi-Rae;Kim, Chul-Yun;Kwon, Kang;Seo, Hyung-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Objectives : The purpose of this study was to analyze and report status of Korean Medicine Ophthalmology patients who did funduscopy examination. Through this, we hope that the development of our diagnosis and treatment. Methods : From June 1, 2010 to May 31, 2019, Based on the electronic medical records of patients who had funduscopy examination at Korean Medicine Ophthalmology, Busan University Korean Medicine Hospital, the gender, age, visiting motives and paths, diagnosis, examination number of years, other eye examinations and treatments method were summarized and analyzed. Results : 463 patients were able to check the electronic medical records. They were 283 females and 180 males. The mean age of the patients was 51.5 years and elderly patients who 50s and 60s were 49.3% of whole patients. The most common motives for Korean Medicine Ophthalmology visitation was 'combination treatment with other department in Korean Medicine Hospital'. Outer eye diseases were 283 cases, inner eye diseases were 198 cases. Dry eye syndrome, asthenopia, visual discomfort, conjunctivitis, and eye discomfort were most common in the outer eye diseases. Cataracts, Vitreous floater, Macular Degeneration, Glaucoma and Ocular Pain were most common in the inner eye disease. The most common parts of outer eye diseases were Conjunctival, lacrimal gland, paralytic, corneal, eyelid and front uveal, scleral disease and then in inner eye diseases parts, Retinal, lens, vitreous, glaucoma, optic nerve, behind uveal, choroid disease were most common. The number of funduscopy examination was ups and downs. Herbal medicine was the most common used. Conclusions : The funduscopy examination is essential for diagnosis and treatment of eye disease. We hope that the use of fundus examination and other ophthalmologic examination will be expanded soon in Korean Medicine Ophthalmology.

Microarray Analysis of Differentially Expressed Genes in the Brains of Tubby Mice

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The tubby mouse is characterized by progressive retinal and cochlear degeneration and late-onset obesity. These phenotypes are caused by a loss-of-function mutation in the tub gene and are shared with several human syndromes, suggesting the importance of tubby protein in central nervous system (CNS) functioning. Although evidence suggests that tubby may act as a transcription factor mediating G-protein coupled receptor (GPCR) signaling, any downstream gene regulated by tubby has yet to be identified. To explore potential target genes of tubby with region-specific transcription patterns in the brain, we performed a microarray analysis using the cerebral cortex and hypothalamus of tubby mice. We also validated the changes of gene expression level observed with the microarray analysis using real-time RT-PCR. We found that expression of erythroid differentiation factor 1 (Erdrl) and caspase 1 (Casp1) increased, while p21-activated kinase 1 (Pak1) and cholecystokinin 2 receptor (Cck2r) expression decreased in the cerebral cortex of tubby mice. In the hypothalamic region, Casp 1 was up-regulated and $\mu$-crystallin (CRYM) was down-regulated. Based on the reported functions of the differentially expressed genes, these individual or grouped genes may account for the phenotype of tubby mice. We discussed how altered expression of genes in tubby mice might be understood as the underlying mechanism behind tubby phenotypes.

A Case of Mitochondrial Respiratory Chain Defect with Progressive Bilateral Cararacts (진행성 양측 백내장이 동반된 미토콘드리아 질환 1례)

  • Lee, Soonie;Lee, Young-Mock
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.95-98
    • /
    • 2018
  • A striking feature of mitochondrial disorders is the vast heterogeneity in their clinical symptoms that ranges from a single organ to severe multisystem involvement. Though a variety of ocular symptoms such as ptosis, pigmentary retinal degeneration, external ophthalmoplegia, and optic nerve atrophy can occur in association with mitochondrial cytopathies, progressive bilateral cataracts are rare among their ocular findings. A 5-year-old girl with no previous medical history came to our hospital presenting symptoms of seizure. She started showing progressive developmental regression, increased seizure frequency, hypotonia, general weakness, dysphagia and decreased vision. Lactic acidosis was noted in metabolic screening test and we confirmed mitochondrial respiratory chain complex I defect in spectrophotometric enzyme assay using the muscle tissue. Progressive bilateral cataracts then developed and were fully evident at the age of 7. She underwent cataract extraction with posterior chamber lens implantation. We are reporting a case of mitochondrial respiratory chain defect with multiorgan involvements including bilateral progressive cataract, an uncommon ocular manifestation. Ophthalmologic evaluation is highly recommended not to overlook the possible ocular manifestations in mitochondrial disorders.

  • PDF

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Long-term Results of Taking Anti-oxidant Nutritional Supplement in Intermediate Age-related Macular Degeneration (중기 나이관련황반변성 환자에서 항산화영양제 복용 후 장기 관찰 결과)

  • Bang, Seul Ki;Kim, Eung Suk;Kim, Jong Woo;Shin, Jae Pil;Lee, Ji Eun;Yu, Hyeong Gon;Huh, Kuhl;Yu, Seung-Young
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1152-1159
    • /
    • 2018
  • Purpose: We prospectively investigated clinical changes and long-term outcomes after administration of the drugs recommended by the Age-Related Eye Disease Study-2 to patients with intermediate age-related macular degeneration (AMD). Methods: This prospective multicenter study enrolled 79 eyes of 55 patients taking lutein and zeaxanthin. The primary endpoint was contrast sensitivity; this was checked every 12 months for a total of 36 months after treatment commenced. The secondary endpoints were visual acuity, central macular thickness, and drusen volume; the latter two parameters were assessed using spectral domain optical coherence tomography. Results: The mean patient age was $72.46{\pm}7.16years$. Contrast sensitivity gradually improved at both three and six cycles per degree. The corrected visual acuity was $0.13{\pm}0.14logMAR$ and did not change significantly over the 36 months. Neither the central macular thickness nor drusen volume changed significantly. Conclusions: Contrast sensitivity markedly improved after treatment, improving vision and patient satisfaction. Visual acuity, central retinal thickness, and drusen volume did not deteriorate. Therefore, progression of AMD and visual function deterioration were halted.

Intravitreal Anti-vascular Endothelial Growth Factor Injections to Treat Neovascular Age-related Macular Degeneration: Long-term Treatment Outcomes (삼출 나이관련황반변성에 대한 항혈관내피성장인자 유리체내주사 치료의 장기 임상 결과)

  • Park, Yu Jeong;Son, Gi Sung;Kim, Yoon Jeon;Kim, June-Gone;Yoon, Young Hee;Lee, Joo Yong
    • Journal of The Korean Ophthalmological Society
    • /
    • v.59 no.12
    • /
    • pp.1142-1151
    • /
    • 2018
  • Purpose: We assessed the visual and anatomical outcomes, and the safety profile of long-term intravitreal anti-vascular endothelial growth factor (VEGF) injections (aflibercept, ranibizumab, and bevacizumab) given to treat neovascular age-related macular degeneration (NAMD). Methods: We analyzed medical records collected over 7 years of treatment-naive NAMD patients who received outpatient clinic-based intravitreal anti-VEGF injections. All were treated employing either "treat-and-extend" or "as needed" protocols at the discretion of the retinal specialist. The number of injections, adverse events associated with injection, and measures of visual acuity (VA), central foveal thickness (CFT), and intraocular pressure (IOP) were recorded. Results: Overall, we assessed 196 eyes of 196 patients (average age $68.6{\pm}9.6years$; 77 females). Patients received an average of $17.3{\pm}13.5$ injections over $78.0{\pm}16.5months$ of clinical follow-up. The initial mean VA (logMAR) was $0.75{\pm}0.58$ and the CFT was $349.7{\pm}152.6{\mu}m$. Both parameters exhibited maximal improvements at the 6-month visit (p < 0.05). However, the clinical outcomes worsened over the 7-year clinical course; the best-corrected visual acuity (BCVA) was $0.91{\pm}0.78$ and the CFT was $284.5{\pm}105.8{\mu}m$ at 7 years. The BCVA at 7 years was significantly correlated with the initial BCVA. IOP-related events increased 11-fold and anterior chamber reactions increased 3-fold over the years, but no significant complications such as endophthalmitis were recorded. Conclusions: The use of intravitreal anti-VEGF agents was associated with initial visual improvements over 6 months but did not prevent the worsening of NAMD over 5 years. The BCVA at the initial visit was a strong predictor of the final BCVA. A more intensive injection schedule might improve long-term outcomes.