• Title/Summary/Keyword: retaining structures

Search Result 261, Processing Time 0.026 seconds

Lateral Earth Pressure Caused by Action on Earth Retaining Wall in Clay Foundation Ground with Consideration of Construction Speed (지중 구조물에 작용하는 측방토압에 대한 성토 재하 속도의 영향)

  • Im Eun-Sang;Lee Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.57-68
    • /
    • 2004
  • When an embankment is constructed on soft clay ground, the lateral displacement generally called as lateral flow is generated in the foundation ground. It strongly affects stabilities of structures, such as foundation piles and underground pipes, in and on the foundation ground. The lateral earth pressure induced by the lateral flow is influenced by the magnitude and construction speed of embankment, the geometric conditions and geotechnical characteristics of the embankment, and the foundation ground, and so on. Accurate methods for estimating the lateral earth pressure have not ever been established because the lateral flow of a foundation ground shows very complicated behavior, which is caused by the interaction of shear deformation and volumetric deformation. In this paper, a series of model tests were carried out in order to clarify effects of construction speed of an embankment on the lateral earth pressure in a foundation ground were design. It was found that the magnitude and the distribution of the lateral earth pressure and its change with time are dependent on the construction speed of the embankment. It was found that a mechanism for the lateral earth pressure was generated by excess pore water pressure due to negative dilatancy induced by shear deformation under the different conditions of construction speeds of embankments.

Risk Assessment of the Road Cut Slopes in Gyeoungnam based on Multiple Regression Analysis (다중회귀분석을 통한 경남 지방도로 절취사면의 안정성평가)

  • Kang, Tae-Seung;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.393-404
    • /
    • 2007
  • The purpose of this study is to capture the essentials in survey and evaluation scheme which are able to assess the hazard of a rock slope systematically. Statistical analysis are performed on slope instability parameters related to failure of the rock slope. As the slope instability parameters, twelve survey items are considered such as tension crack, surface deformation, deformation of retaining structures, volume of existing failures, angles between strike of discontinuity and strike of cut slope face, angles between dip of discontinuity and dip of cut slope face, discontinuity condition, cut slope angle, rainfall or ground water level, excavation condition, drainage condition, reinforcement. A total of 233 road cut slopes located in Gyeongnam were considered. The stability of the road cut slopes were evaluated by estimating the slope instability index(SII) and corresponding stability rank. 126 rock slopes were selected to analyze statistical relation between SII and slope instability parameters. The multiple regression analysis was applied to derive statistical models which are able to predict the SII and corresponding slope stability rank. Also, its applicability was explored to predict the slope failures using the variables of slope instability parameters. The results obtained in this study clearly show that the methodology given in this paper have strong capabilities to evaluate the failures of the road cut slope effectively.

Evaluation of at Rest Lateral Stress Coefficient Influenced by Particle Condition (입자의 조건에 따른 정지토압계수 평가)

  • Lee, Jung-Hwoon;Lee, Dong-Ryeol;Yun, Tae-Sup;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.21-29
    • /
    • 2012
  • At-rest lateral stress coefficient that is used for the evaluation of geotechnical structures such as foundations and retaining walls plays a significant role in the analysis and design, as a state variable of in-situ stress condition. In the widely applied Jaky's Ko equation stress condition can be inferred from the internal friction angle obtainable from the laboratory experimentation whereas the eguation mares it challenging to evaluate the influences and criteria of particle characteristics which is essential for the application of friction angles in practices. Thus, this study experimentally explored the behaviors of Ko depending on the relative density, particle shape, and surface roughness effect during a range of loading stages. The Ko values of Jumumjin sand, glass beads, and etched glass beads were measured using a customized Ko device housing strain gauges during loading-unloading-reloading steps, and the effect of dominant factors on Ko is analyzed. Results show that the high Ko prevails for both round and angular specimens with low relative density and the surface roughness has a nominal effect. The angular particles exhibit low Ko for specimens with similar relative density. The characteristics of relevance between Ko and friction angles with varying relative density are also investigated based on the experimental results using empirical correlations and previously reported values.

A Study on the Ground Improvement Effect with Grouting in Backside of Retaining Wall (흙막이 벽체 배면 그라우팅 시 지반보강 효과에 관한 연구)

  • Chu, Ickchan;Byun, Yoseph;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.77-83
    • /
    • 2012
  • Recently, excavations using propped walls were popularized in downtown due to reduced settlement of nearby structures. These excavations is induced strain to propped walls or settlement in near ground. In this study, the ground reinforcing effect was proven using NDS, which is an inorganic injection material. Injection tests were performed to compute optimum injection pressure and volume. Next, calibration chamber tests were performed by using computed injection pressure and volume, and wall behaviour was examined for overburden pressures of 50kPa and 150kPa. Ground reinforcing effect was shown when the material behind the propped wall was grouted. From test results, optimum injection pressure was 350kPa and the optimum volume was 10L considering economics. Calibration chamber test results show that after the material was grouted, the maximum settlement was reduced to 19% of the non-grouted condition. For overburden pressures of 50kPa and 150kPa behind the wall, the settlement of the wall increased by 58% and 57% when compared to the case of no overburden pressure.

Synthesis of Novel Pseudo-ceramide and Its Properties (신규 유사세라마이드의 합성과 그 특성)

  • Kim, Jin-Guk;Kim, Kyoung-Tae;Park, Sun-Hee;Lee, Bang-Yong;Kim, Ki-Ho;Kim, Young-Heui
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • Ceramides, a constituent of stratum corneum lipids, play a crucial role in the formation and maintenance of the epidermal permeability barrier. As in many other skin disorders, atopic dermatitis and psoriasis show decrease and transformation of the ceramides. The application of ceramide has been demonstrated to be efficient in the repair of these skin disorders. Nevertheless, natural ceramides are still too expensive and small in quantity to be used as a cosmetic ingredient. Although a lot of pseudo-ceramides have been developed and on the market until now, those pseudo-ceramides did not fully meet the consumer's needs, therefore, there is still a demand for a novel pseudo-ceramides. We synthesized a novel pseudo-ceramide BPC-16 from 2-(2-amino-ethylamino)-ethanol(AEEA), which was characterized by structures having both amide bonds and hydroxyl groups as hydrophilic units, as well as two long alkyl chains. We formulated emulsion with BPC-16, cholesterol, stearic acid, and other components to make an emulsion. These emulsion showed a typical optical anisotropy on cross-polarized microscopy. This 'Maltese cross' appearance is a characteristic figure observed in concentric lamellar emulsion under cross-polarized microscopy. In cytotoxicity assay using MTT in monolayer and three dimension(3D) cell culture, a BPC-16 showed only negligible cytotoxicity up to the effective concentration for barrier repair and moisturization(less than 10 mM). In the measurement of TEWL, this BPC-16 showed significant recovery of water-retaining properties when it was topically applied to either SDS-induced dry skin or normal skin compared to that of base cream. This novel pseudo-ceramide BPC-16 showed as effective in skin barrier repair and moisturization as natural ceramides.

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Improvement of existing drainage system for leakage treatment in exiting underground structures (운영중인 지하구조물의 누수처리를 위한 유도배수공법의 개선)

  • Kim, Dong-Gyou;Yim, Min-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.669-683
    • /
    • 2017
  • The objective of this study is to propose a modification of the previously proposed drainage system for catching the partial leakage of underground concrete structures. Two techniques were proposed for applying the drainage system only to the leaking parts. One was for conveying leaking groundwater to the collection point in the drainage system and the other was for conveying the collected groundwater to the primary drainage system of the underground concrete structure. Four waterproofing materials for conveying leaking groundwater to the catchment point of the drainage system, Durkflex made of porous rubber material, KE-45 silicone adhesive with super strong adhesion, Hotty-gel made of polymeric materials and general silicone adhesive were evaluated for waterproofing performance. Hotty-gel only showed perfect waterproof performance and the other three waterproof materials leaked. The modified drainage system with Hotty-gel and drainage pipe with fixed saddle to convey the leaking groundwater from the catchment point to the primary drainage system were tested on the concrete retaining wall. The waterproof performance and the drainage performance were evaluated by injecting 1,000 ml of water in the back of the modified drainage system at the 7-day, 14-day, 21-day, 28-day, 2-month and 3-month. There was no problem in waterproof performance and drainage performance of the modified drainage system during 3 months. In order to evaluate the construction period and construction cost of the modified drainage system, it was compared with the existing leaching repair method in surface cleaning stage, leakage treatment stage, and protective barrier stage. Total construction period and construction cost were compared in considering the contents of work, repair material, construction equipment, working time, and total number of workers. As a result of comparing and analyzing in each construction stage, it was concluded that the modified drainage system could save construction period and construction cost compared to the existing leaching repair method.

The Study on the Effect of Density and Moisture Content on Shear Strength of Soils (흙의 밀도(密度)와 함수비(含水比)가 전단강도(剪斷强度)에 미치는 영향(影響))

  • Cho, Seung-Seup;Kang, Sin-Up;Kang, Yea-Mook;Kim, Seung-Wan;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 1978
  • It has been known that the shear strength of soil is an important design parameter for the foundation of structures, the retaining walls, the slope failures and so forth. In this study, the shear test was performed by using the direct shear apparatus under various degree of the moisture content and the density of the sample soils. The results of the study were summarized as follows; 1. The shear strength of soil increased with increase in the dry density of soil, and at the same level of density of the sample the shear strength of soil showed large values on a good grading of the sample. 2. The cohesion of the soil varied directly with the dry density of it, however the internal friction angle of soil was not affected by the dry density of tile sample. 3. The shear strength of sample varied inversly with the moisture content of it, and this phenomenon was apparent on a good grad ing of sample. 4. The cohesion of soil showed maximum value when the moisture content of the soil reached optimum level and the internal friction angle decreased with increase in the moisture content of it. These phenomena were very obvious on a good grading sample, SDC-1. 5. The cohesion of the soil decreased with increase in void ratio of the sample, but the internal friction angle of the sample didn't show such tendency.

  • PDF

Using Platforms as Market Creation Strategies for Small and Medium-Sized Service Robotics Companies in South Korea: The ROBOPRINT Case Study (국내 중소 서비스용 로봇 기업의 플랫폼을 이용한 시장 창출 전략: 로보프린트 사례연구)

  • Oh, Soo Jung
    • Korean small business review
    • /
    • v.43 no.2
    • /
    • pp.59-86
    • /
    • 2021
  • The platform concept has been used for business operations in various forms: product platforms, transaction platforms and industry platforms. All these platforms have common characteristics of having 'core' that is reused frequently and 'peripherals' that are less reusable and changed often. Companies use platforms to enable efficient development and creation of product family, transactions and innovation. These platforms provide new opportunities for many small and medium-sized companies (SMEs) by bringing changes to traditional industrial structures focused on the products rather than platforms. The service robotics industry in South Korea is mainly composed of technology-intensive SMEs due to its small market size. Although these SMEs succeed in developing technologies, they have difficulties creating and expanding markets to sell products. Thus, this study addresses the characteristics and problems of the South Korean service robotics industry and analyses how ROBOPRINT, one of the SMEs in the service robotics industry, successfully creates and continuously expands the service robot market by adopting platform concept. The results indicate that ROBOPRINT has been applying two types of platforms: product and transaction platforms. First, ROBOPRINT created art robots that were apartment mural service robots. Rather than selling art robots, the company developed various robots such as painting robots, building exterior wall-cleaning robots by reusing the core technology of the robots. The company also developed various robots according to the buyers request. In addition, the company used the robots to directly provide apartment mural services for customers. This mural service has been extended into various areas, not only in apartments but also in soundproof walls, underground passages, and retaining walls. Besides, ROBOPRINT added new services continuously by developing technologies such as virtual reality. Second, ROBOPRINT mediated mural service buyers and mural designers. This platform reduced buyers' workload, which necessitates requesting mural services to ROBOPRINT and searching for mural designers. For designers, this opened up new opportunities to participate in the mural business. The platform attracted both mural buyers and designers who were scattered before. Finally, ROBOPRINT seeks to expand the platform's scope to outside company. To share internally reused ROBOPRINT's technology with other companies, the company participated in Daegu city's 'New Technology Platform Industry'. Furthermore, ROBOPRINT is trying to share the service platform by leasing robots to other companies. This allows external agents to develop technologies and provide services by reusing resources from ROBOPRINT. This study contributes to existing theories by showing that SMEs continuously create and expand markets by building various platforms. Moreover, it provides useful implications for practitioners by describing the firm's specific platform-building strategy.