• Title/Summary/Keyword: retained tensile strength

Search Result 80, Processing Time 0.028 seconds

Study of UV Degradation of Lacquer and Natural Adhesives Using Lacquer Mixed with Animal Glue (옻과 옻에 아교를 배합한 천연접착제의 자외선에 의한 노화 특성 연구)

  • Ahn, Sunah;Kim, Eun Kyung;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.501-510
    • /
    • 2016
  • In this study, we investigated the degradation of adhesives when exposed to ultraviolet light irradiation using samples of lacquer (L), treated lacquer (TL), lacquer mixed with glue (LG), and urushiol mixed with glue (UG). Four types of film specimens were collected under the ultraviolet exposure time, and gloss test, tensile shear strength test, scanning electron microscope analysis, and infrared spectroscopic analysis were conducted for the specimens. LG and UG showed lowering rate of gloss is somewhat later than L. Also, it was observed that with increasing exposure time to ultraviolet irradiation, the surface of L began to show spherical pits and cracks when the polysaccharide layers started to be exposed, whereas the surfaces of LG and UG remained smooth. The Infrared spectra of L and TL showed that the intensity of the overall peak decreased with increasing ultraviolet irradiation time. There was no change in the peak intensity of LG, but for UG, the peaks at $3013cm^{-1}$, $1593cm^{-1}$ and so on disappeared and the overall intensity declined. The tensile shear strength of LG and UG was maintained or increased as compared to the initial test, whereas the tensile shear strength of L decreased sharply after 600 h. LG and UG exhibited fewer changes as a result of high temperature and humidity conditions, and they retained their strength under UV exposure. These results indicate that LG and UG are more durable than L when subjected to environmental change.

Exploration of Optimum Retention of Antibacterial Agents in Functional Packaging Paper (항균 포장원지내 항균소재의 최적 정착법 탐색)

  • Kim, Chul-Hwan;Kim, Jae-Ok;Jung, Jun-Ho;Cho, Sung-Hwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.298-305
    • /
    • 2005
  • Antimicrobial packaging paper was prepared with a powder-type botanical antimicrobial agent from grapefruit seed extract (BAAG) and zeolite according to TAPPI standard method. The functional fillers containing BAAG fixed to CaCO$_3$ and zeolite were well retained in the fiber network by a retention aid such as cationic polyacrylamide, which was ascertained by the ash contents of paper and the SEM microphotographs. With addition of the functional fillers to paper, tensile strength and burst strength of the paper decreased by interference of the functional fillers with interfiber bonding but bending stiffness and tear strength increased by improved elastic modulus of paper and delayed transfer of tearing energy. Finally, it was confirmed that the antimicrobial packaging paper might be able to be used to make packaging bags and corrugated containers due to the minor deterioration of strength properties.

The Durability of Geotextiles for Outdoor Exposure during the Construction of Solid Waste Landfill (폐기물 매립지 건설시 옥외 노출된 Geotextiles의 내구성에 관한 연구)

  • 고재학;이재영;전한용
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 2000
  • Recently, many landfills are constructed by using geosynthetics with earth materials. Geotextiles in geosynthetics are applied for the various purposes such as filters of the leachate collection and removal system and protectors of geomembrane liner. However geotextiles can be exposed to direct sunlight during the construction of landfill for several months. As you know the exposure of polymers to sunlight can be a major source of degradation of them. This study is to suggest a criteria on the installation of heavy weight geotextiles at the landfill. For this purpose, several different geotextiles were evaluated by outdoor exposure at two different locations and under the different seasons for one and half years. As the results of outdoor exposure, polypropylene geotextiles with 500g/$m^2$ and 700g/$\textrm{m}^2$were maintained around 40% of the initial strength during for one and half years. However, the polypropylene geotextile of 1000g/$\textrm{m}^2$showed 65% of the retained strength for the same duration of exposure. The retained strength of all polypropylene geotextile reduced dramatically with the cumulative sunshine radiation on a horizontal surface of around 1500MJ/$\textrm{m}^2$.

  • PDF

A Study on the Wear Characteristics of Austempered Ductile Iron (오스템퍼링한 구상흑연주철의 마모특성에 미치는 기지조직의 영향에 관한 연구)

  • Kim, Yun-Bog;Kim, Chang-Gyu;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.10 no.3
    • /
    • pp.235-246
    • /
    • 1990
  • This study has been carried out to investigate into the rolling wear characteristics of austempered ductile iron under unlubricated dry rolling condition by Amsler type test with 9.09% sliding ratio. Wear amount is increased with increasing of ferrite and retained austenite and it has been found that the amount of rolling wear is decreased when the hardness of matrix are higher. The rolling life up to generation of abnormal condition is conspicusly increased and amount of rolling wear is increased asrolling revolutionis increased and wear of austempered ductile ironunder dry rolling condition. Matrix has been obtained to upper bainite, low bainite at heat treatment, obtained to bull`s eye structure at as cast. It has been found that the amount of rolling wear is decreased when the tensile strength of the casting are increased and then the rolling life up to generation of abnormal wear in conspicuously increased and amount of wear was intend to graphite content.

  • PDF

Effect of Austempering Factors and Mn Addition on Mechanical Properties of ADI (오스템퍼링 조건과 Mn의 양이 ADI의 기계적 성질에 미치는 영향)

  • Suh, Kwan-Soo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.12 no.5
    • /
    • pp.390-396
    • /
    • 1992
  • In this study, we investigated effect of austempering factors and Mn addition on mechanical properties of ADI with ferrite-bainite matrix by pearlite-bainite transformation treatment. Ductile cast iron specimens containing various of Mn were austenitized at 875$^{\circ}C$ for 350 sec or 925$^{\circ}C$ for 160 sec and then austempered at 300$^{\circ}C$ or 400$^{\circ}C$ for the various periods(5 to 30 min). Manganese increased pearlite volume fraction in as cast ductile cast iron. The obtained results are as follows ; 1) In austenitizing, hardness of sepecimens austenitized at 875$^{\circ}C$ for 350 sec was higher than that of 925$^{\circ}C$ for 160 sec. 2) In effect of austempering temperature, tensile strength and handness of specimens austempered at 300$^{\circ}C$ was higher than that of 400$^{\circ}C$. However, elongation had reverse tendency. 3) Increasing austempering time decreased hardness due to the increment of bainite and retained austenite fractions. However, toughness are increased.

  • PDF

Comparing Laboratory Responses of Engineered Emulsified Asphalt and Foamed Asphalt Mixtures for Cold In-place Recycling Pavement (현장 상온 재생 아스팔트 포장을 위한 고점착 유화 아스팔트 혼합물과 폼드 아스팔트 혼합물의 반응특성 비교)

  • Kim, Yong-Joo Thomas;Lee, Ho-Sin David
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.79-86
    • /
    • 2010
  • Cold in-place recycling (CIR) using emulsified asphalt or foamed asphalt has become a more common practice in rehabilitating the existing asphalt pavement due to its cost effectiveness and the conservation of paving materials. As CIR continues to evolve, the engineered emulsified asphalt was developed to improve the field performances such as coating, raveling, retained stability value and curing time. The main objective of this research is to compare the laboratory responses of the engineered emulsified asphalt (CIR-EE) mixtures against the foamed asphalt (CIR-foam) mixtures using the reclaimed asphalt pavement (RAP)materials collected from the CIR project on U.S. 20 Highway in Iowa. Based on the visual observation of laboratory specimens, the engineered emulsified asphalt coated the RAP materials better than the foamed asphalt because the foamed asphalt is to create a mastic mixture structure rather than coating RAP materials. Given the same compaction effort, CIR-EE specimens exhibited lesser density than CIR-foam specimens. Both Marshall stability and indirect tensile strength of CIR-EE specimens were about same as those of CIR-foam specimens. However, Marshall stability and indirect tensile strength of the vacuum-saturated wet specimens of CIR-EE mixtures were higher than those of CIR-foam mixtures. After four hours of curing in the room temperature, the CIR-EE specimens showed less raveling than the CIR-foam specimens. On the basis of test results, it can be concluded that the CIR-EE mixtures is less susceptible to moisture and more raveling resistant than CIR-foam mixtures.

Effects of Heat Treatment Condition on the Mechanical Properties in Fe-0.4%C-2.3%Si Steel (Fe-0.4C-2.3Si강의 기계적 성질에 미치는 오스템퍼링 열처리 조건의 영향)

  • Son, Je-Young;Song, June-Hwan;Kim, Ji-Hun;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.104-108
    • /
    • 2012
  • The effect of heat treatment on mechanical properties of 0.4C-2.3Si(wt%) steel with bainitic ferrite matrix were investigated. This steel has been synthesized intergrating concepts from TRIP(Transformation Induced Plasticity) steel & Austempered Ductile Cast Iron(ADI) technology. The low alloy medium carbon (0.4 %C) steel with high silicon (2.3 %Si) was initially annealed for 60 min at $800^{\circ}C$, $820^{\circ}C$ and $840^{\circ}C$ respectively in the intercritical region and then subsequently austempered at various temperatures at $260^{\circ}C$, $320^{\circ}C$ and $380^{\circ}C$ for 30 min in a salt bath. The mechanical properties were measured by using a tensile test. A detailed study of the microstructure of this steel after heat treatment was carried out by means of electron back scattering diffraction (EBSD) technic. In this study, a new low alloy steel with high strength (780~1,050MPa) and exceptionally high ductility (20~40%) was obtained.

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing;Wei, Xu-li;Bai, Chong;Miao, De-jun;Cao, Lei;Li, Xiao-ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2376-2385
    • /
    • 2022
  • Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Characterizations of Water-dispersed Biocellulose Nanofibers on the Skin Surface (피부 표면에서의 수분산 바이오셀룰로오스 미세섬유의 특성에 대한 연구)

  • Jun, Seung-Hyun;Kim, Seo Yeon;Park, Sun Gyoo;Lee, Cheon Koo;Lee, Seol-Hoon;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.89-94
    • /
    • 2018
  • In this study, water-dispersed biocellulose nanofibers (TC) were prepared via an oxidation reaction using 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (TEMPO) as a catalyst. The TC retained their unique structure in water as well as in emulsion. TC adhered to the skin surface while maintaining nanofibrous structures, providing inherent functions of biocellulose, such as high tensile strength and high water-holding capacity. When gelatin gels as model skin were coated with TC, the hardness representing the elasticity was increased by 20% compared to untreated gelatin gel because TC could tightly hold the gelatin structure. When porcine skin was treated with TC and TC-contained O/W emulsion, the initial water contact angles of TC were lower than other materials, and dramatically decreased over time as water penetrated the fibrous structure of the TC film. Characterization of TC on the skin surface offered insight into the function of nanofibers on the skin, which is important for their applications with respect to fiber-cosmetics.