• Title/Summary/Keyword: restricted divisor functions

Search Result 6, Processing Time 0.023 seconds

A STUDY OF SUM OF DIVISOR FUNCTIONS AND STIRLING NUMBER OF THE FIRST KIND DERIVED FROM LIOUVILLE FUNCTIONS

  • KIM, DAEYEOUL;KIM, SO EUN;SO, JI SUK
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.435-446
    • /
    • 2018
  • Using the theory of combinatoric convolution sums, we establish some arithmetic identities involving Liouville functions and restricted divisor functions. We also prove some relations involving restricted divisor functions and Stirling numbers of the first kind for divisor functions.

A STUDY OF COFFICIENTS DERIVED FROM ETA FUNCTIONS

  • SO, JI SUK;HWANG, JIHYUN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.359-380
    • /
    • 2021
  • The main purpose and motivation of this work is to investigate and provide some new results for coefficients derived from eta quotients related to 3. The result of this paper involve some restricted divisor numbers and their convolution sums. Also, our results give relation between the coefficients derived from infinite product, infinite sum and the convolution sum of restricted divisor functions.

CHANGING RELATIONSHIP BETWEEN SETS USING CONVOLUTION SUMS OF RESTRICTED DIVISOR FUNCTIONS

  • ISMAIL NACI CANGUL;DAEYEOUL KIM
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.553-567
    • /
    • 2023
  • There are real life situations in our lives where the things are changing continuously or from time to time. It is a very important problem for one whether to continue the existing relationship or to form a new one after some occasions. That is, people, companies, cities, countries, etc. may change their opinion or position rapidly. In this work, we think of the problem of changing relationships from a mathematical point of view and think of an answer. In some sense, we comment these changes as power changes. Our number theoretical model will be based on this idea. Using the convolution sum of the restricted divisor function E, we obtain the answer to this problem.

A New Tree Modeling based on Convolution Sums of Restricted Divisor Functions (약수 함수의 합성 곱 기반의 새로운 나무 모델링)

  • Kim, Jinmo;Kim, Daeyeoul
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.637-646
    • /
    • 2013
  • In order to model a variety of natural trees that are appropriate to outdoor terrains consisting of multiple trees, this study proposes a modeling method of new growth rules(based on the convolution sums of divisor functions). Basically, this method uses an existing growth-volume based algorithm for efficient management of the branches and leaves that constitute a tree, as well as natural propagation of branches. The main features of this paper is to introduce the theory of convolution sums of divisor functions that is naturally expressed the growth or fate of branches and leaves at each growth step. Based on this, a method of modeling various tree is proposed to minimize user control through a number of divisor functions having generalized generation functions and modification of the growth rule. This modeling method is characterized by its consideration of both branches and leaves as well as its advantage of having a greater effect on the construction of an outdoor terrain composed of multiple trees. Natural and varied tree model creation through the proposed method was conducted, and using this, the possibility of constructing a wide nature terrain and the efficiency of the process for configuring multiple trees were evaluated experimentally.

The Integer Number Divider Using Improved Reciprocal Algorithm (개선된 역수 알고리즘을 사용한 정수 나눗셈기)

  • Song, Hong-Bok;Park, Chang-Soo;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1218-1226
    • /
    • 2008
  • With the development of semiconductor integrated technology and with the increasing use of multimedia functions in computer, more functions have been implemented as hardware. Nowadays, most microprocessors beyond 32 bits generally implement an integer multiplier as hardware. However, as for a divider, only specific microprocessor implements traditional SRT algorithm as hardware due to complexity of implementation and slow speed. This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division. That is, the reciprocal number D is first calculated, and then multiply dividend N to process integer division. In this paper, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of ' $\frac{1}{D}$', '$1.g{\times}2^{-L}$', which satisfies ' $0.d{\times}1.g=1+e$, $e<2^{-w}$', is defined as over reciprocal number and then an algorithm for over reciprocal number is suggested. This algorithm multiplies over reciprocal number '$01.g{\times}2^{-L}$' by dividend N to process $\frac{N}{D}$ integer division. The algorithm suggested in this paper doesn't require additional revision, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm and performs operation by word unit, accordingly it is more suitable to make compiler than the existing division algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.