• Title/Summary/Keyword: restricted angle

Search Result 81, Processing Time 0.024 seconds

Electro-fatigue Characteristic of Shape Memory Alloy Applied to the Electrosurgical Knee Wand of Variation of Wand Head Angle in Electrosurgical Knee Surgeries (헤드각이 변화하는 Electrosurgical Knee Wand에 적용된 형상기억합금 스프링의 전기적 피로특성)

  • An, Jae-Uk;Kim, Cheol-Woong;Lee, Ho-Sang;Wang, Joon-Ho;Oh, Dong-Joon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1547-1552
    • /
    • 2008
  • The tip of these catheter with straight needles is not able to reach in the vicinity of the disc bulging, which are the cause of the low back pain and because the far indirect radio-frequency treatment results in the decompression, the nucleoplasty has the limit. Many incurable diseases has not been solved due to the unexistence of the advanced technique for the MIS human body catheter device. To increase the possibility of nucleoplasty, the needle tip should be located at the closest area of the lesion. For this reason, the best way to increase the success rate of the operation is that the needle tip should access 3-dimensionally to the operating field as soon as possible. To achieve this aim, our studies are restricted as follows: 1) the SMA catheter design to control the 3-dimensional direction, 2) the security of the immediate response by the positive control of the SMA element thermal distribution using Peltier thermoelectric elements, 3) the aquisition of the control data by monitoring the relationship between the temperature of SMA element and the displacement, and 4) the design of the controller to guarantee the accurate location.

  • PDF

Development of an Intelligent Active Trailing-edge Flap Rotor to Reduce Vibratory Loads in Helicopter (헬리콥터의 진동하중 저감을 위한 지능형 능동 뒷전 플랩 로터 제어 시스템 개발)

  • Lee, Jae-Hwan;Choe, Jae-Hyeok;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.492-497
    • /
    • 2011
  • Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. Those are at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle at arbitrary frequencies. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to modify the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  • PDF

Influence of Neuromuscular Electrical Stimulation on MEF2C and VEGF Expression of Neonatal Rat Skeletal Muscle During Suspension Unloading (신경근전기자극이 체중 부하를 제거한 신생 흰쥐 골격근 조직의 MEF2C 및 VEGF 발현에 미치는 영향)

  • Koo, Hyun-Mo;Lee, Sun-Min
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.28-36
    • /
    • 2007
  • The aim of this study was to identify the effect of suspension unloading (SU) and electrical stimulation upon the development of neonatal muscular system. For this study, the neonatal rats were randomly divided into three groups: a control group, an experimental group I, and an experimental group II. The SU for experimental group I and II was applied from postnatal day (PD) 5 to PD 30. The electrical stimulation for soleus muscle of experimental group IIwas applied from PD 16 to PD 30 using neuromuscular electrical stimulation (NMES), which gave isometric contraction with 10 pps for 30 minutes twice a day. In order to observe the effect of SU and ES, this study observed myocyte enhancer factor 2C (MEF2C) and vascular endothelial growth factor (VEGF) immunoreactivity in the soleus muscles at PD 15 and PD 30. In addition, the motor behavior test was performed through footprint analysis at PD 30. The following is the result. At PD 15, the soleus muscles of experimental group Iand II had significantly lower MEF2C, VEGF immunoreactivity than the control group. It proved that microgravity conditions restricted the development of the skeletal muscle cells at PD 15. At PD 30, soleus muscles of the control group and experimental group II had significantly higher MEF2C, VEGF, immunoreactivity than experimental group I. It proved that the NMES facilitated the development of the skeletal muscle cells. At PD 30, it showed that SU caused the decrease in stride length of parameter of gait analysis and an increase in toe-out angle, and that the NMES decreased these variations. These results suggest that weight bearing during neonatal developmental period is essential for muscular development. They also reveal that NMES can encourage the development of muscular systems by fully supplementing the effect of weight bearing, which is an essential factor in the neonatal developmental process.

  • PDF

Automatic Pattern Setting System Reacting to Customer Design

  • Yuan, Ying;Huh, Jun-Ho
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1277-1295
    • /
    • 2019
  • With its technical development, digital printing is being universally introduced to the mass production of clothing factories. At the same time, many fashion platforms have been made for customers' participation using digital printing, and a tool is provided in platforms for customers to make designs. However, there is no sufficient solution in the production stage for automatically converting a customer's design into a file before printing other than designating a square area for the pattern designed by the customer. That is, if 30 different designs come in from customers for one shirt, designers have to do the work of reproducing the design on the clothing pattern in the same location and in the same angle, and this work requires a great deal of manpower. Therefore, it is necessary to develop a technology which can let the customer make the design and, at the same time, reflect it in the clothing pattern. This is defined in relation to the existing clothing pattern with digital printing. This study yields a clothing pattern for digital printing which reflects a customer's design in real time by matching the diagram area where a customer designs on a given clothing model and the area where a standard pattern reflects the customer's actual design information. Designers can substitute the complex mapping operation of programmers with a simple area-matching operation. As there is no limit to clothing designs, the variousfashion design creations of designers and the diverse customizing demands of customers can be satisfied at low cost with high efficiency. This is not restricted to T-shirts or eco-bags but can be applied to all woven wear, including men's, women's, and children's clothing, except knitwear.

A Study on Shifting of Pivoting Point in accordance with Configuration of Ships (선형에 따른 전심의 이동에 관한 연구)

  • 최명식
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS (상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석)

  • Kim, Han-Koo;Kim, Chang-Hyen;Pyo, Sung-Woon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

Evaluating the Effectiveness of Quasi-Zenith Satellite System on Positioning Accuracy Based on 3D Digital Map Through Simulation

  • Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.751-756
    • /
    • 2002
  • Since the operation of the first satellite-based navigation services, satellite positioning has played an increasing role in both surveying and navigation, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with GPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the GPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-Dimensional digital map. Through this simulation system, it is possible to calculate the number of simultaneously visible satellites and available area of the positioning without the need of actual observation.

  • PDF

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties (침투성 구형 모델에 관한 분자 전산 연구: II. 충돌 특성)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.513-519
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.

Analysis of Fine Particle Transfer and Shear Strength Increase Using PFC in Permeation Grouting (PFC를 이용한 침투그라우팅시 미세입자의 이동 및 전단강도증가 해석)

  • Lee, Wan-Ho;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.49-58
    • /
    • 2007
  • Numerical experiments using a distinct element code (PFC3D) were carried out for the analysis of grout-material transfer in soil layers and also for the analysis of increase in mechanical strength after permeation grouting. For rapid analysis, up-scaling analysis in length scale was adopted, and the following observations were made from the numerical experiments. Firstly, the relative size of grout material with respect to the in situ soil particles controlled the transfer distance of the grout particles. When the size of grout particle was 0.2 to 0.25 times of the in situ soil particles, clogging of pore spaces among the in situ soil particles occurred, resulting in restricted propagation of grout particles. It was also found that there was a threshold value in the size of grout particle. Below the threshold value, the transfer distance of the grout particle did not increase with the decrease of particle size of the grout material. Secondly, the increase in cohesion and internal friction angle was observed in the numerical specimen with grouting treatment, but not with the untreated specimen.

Changes of Undrained Shear Behavior of Sand due to Cementation (고결(Cementation)에 따른 모래의 비배수 전단거동 변화)

  • Lee Woo-Jin;Lee Moon-Joo;Choi Sung-Kun;Hong Sung-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.85-94
    • /
    • 2006
  • Triaxial tests at isotropic confining pressure of 200 kPa were carried out to show the undrained shear behavior of artificially cemented sands, which were cemented by gypsum, and the influences of relative density and DOC (degree of cementation) were investigated from the results. The yield strength, the elastic secant modulus at yield point and the peak frictional angle of cemented sands increased abruptly compared to uncemented sands, and it was checked that cementation exerts more influence on the behavior of sand than the relative density. But after breakage of the cementation bonds, the relative density was more important factor on the behavior of sand than the cementation. Because the compressibility md the excess pore pressure of cemented sands were reduced due to the cementation bonds, the effective stress path of cemented sands was going toward to the total stress path of uncemented sands. The cementation of sand restricted the dialtion of sand at the pre-yield condition, but induced more dilation in the post-yield condition.