• 제목/요약/키워드: response surface method based sequential approximate optimization

검색결과 12건 처리시간 0.02초

노이즈 필터링을 적용한 반응표면 기반 순차적 근사 최적화 (Sequential Approximate Optimization Based on a Pure Quadratic Response Surface Method with Noise Filtering)

  • 이용빈;이호준;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제29권6호
    • /
    • pp.842-851
    • /
    • 2005
  • In this paper, a new method for constrained optimization of noisy functions is proposed. In approximate optimization using response surface methods, if constraints have severe noise, the approximate feasible region defined by approximate constraints is apt to include some of the infeasible region defined by actual constraints. This can cause the approximate optimum to converge into the infeasible region. In the proposed method, the approximate optimization is performed with the approximate constraints shifted by their deviations, which are calculated using a diagonal quadratic response surface method. This can prevent the approximate optimum from converging into the infeasible region. To fit the objective and constraints into diagonal quadratic models, we select the center and 4 additional points along each axis of design variables as experimental points. The deviation of each function is calculated using the differences between the real and approximate function values at the experimental points. A sequential approximate optimization technique based on the trust region algorithm is adopted to manage approximate models. The proposed approach is validated by solving some design problems. The results of the problems show the effectiveness of the proposed method.

FPSO Riser 지지구조의 설계최적화에 대한 근사화 기법의 비교 연구 (A Comparative Study of Approximation Techniques on Design Optimization of a FPSO Riser Support Structure)

  • 심천식;송창용
    • 한국전산구조공학회논문집
    • /
    • 제24권5호
    • /
    • pp.543-551
    • /
    • 2011
  • 본 논문에서는 해양작업 상태의 하중조건을 고려한 부유식 원유생산 저장 하역장치에 설치된 라이져 보강구조의 강도설계에 관련하여 다양한 근사화 기법 기반 설계최적화 및 그 성능을 비교하고자 한다. 설계최적화 문제는 하중조건별 구조강도의 제한조건 하에서 중량을 최소화하여 설계변수인 구조 부재치수가 결정되도록 정식화된다. 비교 연구를 위해 사용된 근사화 기법은 반응표면법 기반 순차적 근사최적화(RBSAO), 크리깅 기반 순차적 근사최적화(KBSAO), 그리고 개선된 이동최소자승법(MLSM) 기반 근사최적화 기법인 CF-MLSM와 Post-MLSM이다. RBSAO와 KBSAO의 적용을 위하여 상용프로세스 통합 설계최적화(PIDO) 코드를 사용하였다. 본 연구에 적용한 MLSM 기반 근사최적화 기법들은 제한조건의 가용성을 보장할 수 있도록 새롭게 개발되었다. 다양한 근사화 모델 기반 설계최적화 기법에 의한 결과는 설계 해의 개선 및 수렴속도 등의 수치적 성능을 기준으로 실제 비근사 설계최적화 결과와 비교 검토하였다.

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION USING DISTRIBUTED COMPUTATION)

  • 김양준;정현주;김태승;조창열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.163-167
    • /
    • 2005
  • A research to evaluate efficiency of design optimization was performed for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition rather than a simultaneous distributed-analyses process using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoil and to evaluate their efficiencies. One dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in distributed computing environment. The SAO was found quite suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the fittest for distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model are annoying and time-consuming so that they often impair the automatic capability of design optimization and also deteriorate efficiency from the practical point of view.

  • PDF

순차적 근사최적화 기법을 이용한 방열판 최적설계 (Optimal Design of a Heat Sink using the Sequential Approximate Optimization Algorithm)

  • 박경우;최동훈
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1156-1166
    • /
    • 2004
  • The shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. In constrained nonlinear optimization problems of thermal/fluid systems, three fundamental difficulties such as high computational cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are commonly confronted. Thus, a sequential approximate optimization (SAO) algorithm has been introduced because it is very hard to obtain the optimal solutions of fluid/thermal systems by means of gradient-based optimization techniques. In this study, the progressive quadratic response surface method (PQRSM) based on the trust region algorithm, which is one of sequential approximate optimization algorithms, is used for optimization and the heat sink is optimized by combining it with the computational fluid dynamics (CFD).

분산컴퓨팅 환경에서 공력 설계최적화의 효율성 연구 (A STUDY ON THE EFFICIENCY OF AERODYNAMIC DESIGN OPTIMIZATION IN DISTRIBUTED COMPUTING ENVIRONMENT)

  • 김양준;정현주;김태승;손창호;조창열
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.19-24
    • /
    • 2006
  • A research to evaluate the efficiency of design optimization was carried out for aerodynamic design optimization problem in distributed computing environment. The aerodynamic analyses which take most of computational work during design optimization were divided into several jobs and allocated to associated PC clients through network. This is not a parallel process based on domain decomposition in a single analysis rather than a simultaneous distributed-analyses using network-distributed computers. GBOM(gradient-based optimization method), SAO(Sequential Approximate Optimization) and RSM(Response Surface Method) were implemented to perform design optimization of transonic airfoils and evaluate their efficiencies. dimensional minimization followed by direction search involved in the GBOM was found an obstacle against improving efficiency of the design process in the present distributed computing system. The SAO was found fairly suitable for the distributed computing environment even it has a handicap of local search. The RSM is apparently the most efficient algorithm in the present distributed computing environment, but additional trial and error works needed to enhance the reliability of the approximation model deteriorate its efficiency from the practical point of view.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

순차적 실험계획법과 인공신경망을 이용한 제한조건이 없는 문제의 최적화 알고리즘 개발 (Development of Optimization Algorithm for Unconstrained Problems Using the Sequential Design of Experiments and Artificial Neural Network)

  • 이정환;서명원
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.258-266
    • /
    • 2008
  • The conventional approximate optimization method, which uses the statistical design of experiments(DOE) and response surface method(RSM), can derive an approximated optimum results through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The purpose of this study is to propose a new technique, which is called a sequential design of experiments(SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network(ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently. The suggested algorithm has been applied to various mathematical examples and a structural problem.

상용프로그램을 사용한 트러스 구조물 근사최적설계 GUI 환경 개발 (Development of GUI Environment Using a Commercial Program for Truss Structure of Approximate Optimization)

  • 임오강;이경배
    • 한국전산구조공학회논문집
    • /
    • 제16권4호
    • /
    • pp.431-437
    • /
    • 2003
  • 본 연구에서는 순차 설계영역 (SDD: sequential Design Domain) 개념을 사용한 GUI(Graphic User Interface)환경 프로그램을 개발하였다. 본 프로그램은 상용프로그램인 ANSYS와 최적설계 프로그램인 PLBA(Pshenichny-Lim-Belegundu-Arora)를 연결하고 비주얼 베이직을 이용하여 GUI환경에서 사용자가 초기값과 입력파일을 작성하고 결과를 확인할 수 있도록 하였다. 프로그램의 신뢰도를 검증하기 위해서 3부재 및 5부재 트러스 구조물을 수치예제로 선정하여 해석하였다.

듀얼 레일 형상에 적합한 철도차량의 차륜 형상 설계 (Design of Railway Vehicle Wheel Profile Suitable for Dual-rail Profile)

  • 변성광;이동형;최하영
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.30-37
    • /
    • 2017
  • When a wheel profile of a train-tram is designed, both train and tram tracks should be considered. This study designed a wheel profile that enables high-speed driving(200km/h) on the train track and low speed driving on the tram track with multiple sharp curves. The study used the approximation optimization method to reduce cost and time, used the sequential quadratic programming method as the optimized algorithm, and the central composite design and response surface method as an approximate model. The optimized wheel shape based on this approximation optimization method reduced wear of the initial wheel showed a better performance in terms of derailment and lateral force.

프런트 필라 트림의 내열특성 향상을 위한 순차적 실험계획법과 인공신경망 기반의 최적설계 (Optimum Design based on Sequential Design of Experiments and Artificial Neural Network for Heat Resistant Characteristics Enhancement in Front Pillar Trim)

  • 이정환;서명원
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1079-1086
    • /
    • 2013
  • Optimal mount position of a front pillar trim considering heat resistant characteristics can be determined by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). Generally, approximated optimum results are obtained through the iterative process by a trial and error. The quality of results depends seriously on the factors and levels assigned by a designer. The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using artificial neural network (ANN) systematically. An appropriate condition is determined from the iterative process based on the analysis of means. With this new technique and ANN, it is possible to find an optimum design accurately and efficiently.