• Title/Summary/Keyword: response surface method (RSM), analysis

Search Result 210, Processing Time 0.031 seconds

Thermal Characteristic Analysis of Induction Motors for Machine Tool Spindle for Motion Error Prediction (운동오차 예측을 위한 공작기계 스핀들용 유도전동기의 발열량 해석)

  • Seong, Ki-Hyun;Cho, Han-Wook;Hwang, Jooho;Shim, Jongyoub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • This paper deals with thermal characteristic analysis of induction motors for machine tool spindle for motion error prediction. Firstly, the inverse design of general induction motors for machine tool spindle has been performed by design principles. Characteristics considering VVVF inverter of induction motors were analyzed. Secondary, power loss and thermal characteristics of induction motors analyzed by equivalent thermal resistance model from Motor-CAD S/W. To develop a second-order fitted power-loss distribution model for the constant-torque operating range of the induction motor, we employed the design of experiment and response surface methodology techniques. Finally, the analysis results were experimentally verified, and the validity of the proposed analysis method was confirmed.

Design of a Wastewater Treatment Plant Upgrading to Advanced Nutrient Removal Treatment Using Modeling Methodology and Multivariate Statistical Analysis for Process Optimization (하수처리장의 고도처리 upgrading 설계와 공정 최적화를 위한 다변량 통계분석)

  • Kim, MinJeong;Kim, MinHan;Kim, YongSu;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.589-597
    • /
    • 2010
  • Strengthening the regulation standard of biological nutrient in wastewater treatment plant(WWTP), the necessity of repair of WWTP which is operated in conventional activated sludge process to advanced nutrient removal treatment is increased. However, in full-scale wastewater treatment system, it is not easy to fine the optimized operational condition of the advanced nutrient removal treatment through experiment due to the complex response of various influent conditions and operational conditions. Therefore, in this study, an upgrading design of conventional activated sludge process to advanced nutrient removal process using the modeling and simulation method based on activated sludge model(ASMs) is executed. And a design optimization of advanced treatment process using the response surface method(RSM) is carried out for statistical and systematic approach. In addition, for the operational optimization of full-scale WWTP, a correct analysis about kinetic variables of wastewater treatment is necessary. In this study, through partial least square(PLS) analysis which is one of the multivariable statistical analysis methods, a correlation between the kinetic variables of wastewater treatment system is comprehended, and the most effective variables to the advanced treatment operation result is deducted. Through this study, the methodology for upgrading design and operational optimization of advanced treatment process is provided, and an efficient repair of WWTP to advanced treatment can be expected reducing the design time and costs.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Statistical Characteristics of Diazinon Degradation using E-beam (전자빔을 이용한 통계적 Diazinon 분해특성 연구)

  • Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.5
    • /
    • pp.57-63
    • /
    • 2013
  • In this study, the characteristics of degradation and mineralization of diazinon using a statistical approach based on Box-Behnken design (BBD, one of response surface method) was investigated in an E-beam process, and also the main factors with diazinon concentration ($X_1$), irradiatin intensity ($X_2$) and pH ($X_3$) which consisted of 3 levels in each factor was set up to determine the effects of factors and optimization. At first, effects of pH and diazinon concentration were investigated to determine the proper range of application on response surface method(RSM). In statistical approach, the regression analysis and analysis of variance (ANOVA) were applied to evaluate the quantitative comparison of each factors in order to obtain the effects were irradiation intensity>diazinon concentration>pH. The regression model predicted the optimization point using the response optimizer to consider the effects of operation conditions were $Y_1=81.73-5.58X_1+23.69X_2-14.23X{_2}^2+4.22X{_3}^2(R^2=99.7%)$, $Y_2=35.23-3.01X_1+10.79X_2-7.58X_2{^2}(R^2=97.9%)$ and 95.7% of diazinon degradation, 41.8% of TOC reduction at 12.75mg/L and 4.26kGy, respectively. The pH condition was not significantly affects on E-beam process than other advanced oxidation processes (AOPs).

A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency (충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구)

  • Lee, Jung Hwan;Jeong, Nak Tak;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Sensory Characteristics of Doenjang Supplemented with Sage Powder as Assessed by Response Surface Methodology (반응표면분석법을 이용한 세이지분말 첨가 된장의 관능적 특성)

  • Kim, Mi-Lim;Jeong, Ji-Suk
    • Food Science and Preservation
    • /
    • v.17 no.2
    • /
    • pp.243-249
    • /
    • 2010
  • We examined sensory characteristics to obtain the optimal conditions for doenjang preparation, using response surface methodology (RSM) to evaluate addition of sage (Salvia officinalis L.) powder to, and the salinity of, doenjang. We aimed to develop a new variety of doenjang linking traditional Korean doenjang preparation with the physiological functionalities of sage. Color values were 1.20-2.70, flavor values 1.60-3.20, taste values 1.40-3.50, texture scores 1.60-3.50, and overall preference values 1.60-3.05, with the differences depending on experimental variations in preparation. Analysis of a reaction surface formed by a quadratic regression equation found that the R-squared values for overall preference, texture, taste, flavor,and color were 0.11-0.41, thus relatively low and insignificant, being less than 5%. In sensory tests, the color value was 2.91 when the salinity was 21.50%, and sage powder was added to a concentration of 3.10% (all w/w). The flavor score was 3.21 when the salinity was 22.52% and sage powder concentration was 3.68%. The taste value was 2.87 when the salinity was 8.62% and sage powder concentration was 4.46%. The texture score was 2.88 when the salinity was 8.00% and sage powder concentration was 6.06%. The overall preference score was 2.74 when the salinity was 20.40% and sage powder concentration was 2.66%. Although this preparation method is new to Koreans, doenjang with added sage was associated with higher sensory scores than traditional doenjang, confirming the possibility of development of a novel functional doenjang.

Aerodynamic Design Optimization of Airfoils for WIG Craft Using Response Surface Method (반응표면법을 이용한 지면효과익기 익형의 공력 설계최적화)

  • Kim, Yang-Joon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.18-27
    • /
    • 2005
  • Airfoils with improved longitudinal static stability were designed for a WIG craft through aerodynamic design optimization. The response surface method is coupled with NURBS-based shape functions and Navier-Stokes flow analysis. The procedure runs in the network-distributed design framework of commercial-code based automated design capability to enhance computational efficiency and robustness.Lift maximization design maintaining similar static margin to a DHMTU airfoil successfully produced a new airfoil shape characterized by pronounced front-loading and the well-known reflexed aft-camber line. Another airfoil design of lower variation in pitching moment during take-off showed weakened front-loaded characteristics and hence decreased lift slightly. Investigations using the present design methodology on an existing optimization result based on potential flow analysis and NACA-type geometry generation demonstrated significance of carrying various geometry generations and more realistic flow analysis with optimization.

Performance Analysis on the Design Variables of a Turbo Blower (터보블로어 설계인자의 성능특성 연구)

  • Jang, Choon-Man;Yang, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.47-51
    • /
    • 2011
  • This paper describes the shape optimization of a blower impeller used for a refuse collection system. Two design variables, which are used to define the blade angles of an impeller, are introduced to increase the blower performance. A blower efficiency is selected as an object function, and the shape optimization of the blade angles is performed by a response surface method (RSM). Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, blower efficiency for the optimal blade angles is successfully increased up to 3.6% compared with that of reference at the design flow rate. Detailed flow field inside the turbo blower is also analyzed and discussed.

Optimal Structure Design for Improvement of Output Power and Efficiency in a Spoke-Type IPMSG for a Special Vehicle (특수차량용 Spoke Type IPMSG의 출력과 효율을 향상시키는 형상 최적설계)

  • Jeon, Hyo-Keun;Kim, Sung-An;Byun, Sang-In;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.848-849
    • /
    • 2015
  • This paper presents the structure design for optimizing output power density and efficiency to develop a spoke-type interior permanent magnet synchronous generator (IPMSG). To obtain the optimal structure, the combination of response surface method (RSM) and 2-D finite element analysis can solve the problem effectively for reducing the volume of permanent magnets (PMs) and maximizing the ratio between power density and efficiency. The effectiveness of this proposed structure design is verified by the simulation and experiment according to the comparison of the electromagnetic characteristics between the initial and modified structure.

  • PDF