• 제목/요약/키워드: response surface design (RSM)

검색결과 668건 처리시간 0.108초

쌍대반응표면최적화를 위한 사후선호도반영법: TOPSIS를 활용한 최고선호해 선택 (A Posterior Preference Articulation Method to Dual-Response Surface Optimization: Selection of the Most Preferred Solution Using TOPSIS)

  • 정인준
    • 지식경영연구
    • /
    • 제19권2호
    • /
    • pp.151-162
    • /
    • 2018
  • Response surface methodology (RSM) is one of popular tools to support a systematic improvement of quality of design in the product and process development stages. It consists of statistical modeling and optimization tools. RSM can be viewed as a knowledge management tool in that it systemizes knowledge about a manufacturing process through a big data analysis on products and processes. The conventional RSM aims to optimize the mean of a response, whereas dual-response surface optimization (DRSO), a special case of RSM, considers not only the mean of a response but also its variability or standard deviation for optimization. Recently, a posterior preference articulation approach receives attention in the DRSO literature. The posterior approach first seeks all (or most) of the nondominated solutions with no articulation of a decision maker (DM)'s preference. The DM then selects the best one from the set of nondominated solutions a posteriori. This method has a strength that the DM can understand the trade-off between the mean and standard deviation well by looking around the nondominated solutions. A posterior method has been proposed for DRSO. It employs an interval selection strategy for the selection step. This strategy has a limitation increasing inefficiency and complexity due to too many iterations when handling a great number (e.g., thousands ~ tens of thousands) of nondominated solutions. In this paper, a TOPSIS-based method is proposed to support a simple and efficient selection of the most preferred solution. The proposed method is illustrated through a typical DRSO problem and compared with the existing posterior method.

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

매실을 이용한 알콜 발효의 최적 조건 (Optimum Condition for Alcohol Fermentation Using Mume (Prunus mume Sieb. et Zucc) Fruits)

  • 손상수;지원대;정현채
    • 한국식품영양과학회지
    • /
    • 제32권4호
    • /
    • pp.539-543
    • /
    • 2003
  • 매실을 사용하여 알콜을 생산하기 위하여 당농도, 발효온도, 발효시간의 3변수와 5수준의 fractional factorial design으로 RSM computer program을 사용하여 최적 발효조건을 조사하였다 알콜함량에 대한 회귀분석결과, $R^2$는 0.9276으로 높게 나타났다. 당농도 8.39%, 발효온도 28.86$^{\circ}C$에서 3.84일간 발효하는 것이 알코올 생성을 위하여 가장 양호하였으며, 이 조건에서의 알코올 생성 예상치는 5.24%이었다.

Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

  • Shi, Jianzhong;Wang, Xiuqing;Wang, Xiaoyin
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.80-84
    • /
    • 2014
  • The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature $290^{\circ}C$, $H_2O_2$ excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.

반응표면방법론을 이용한 BLDC전동기의 코깅토크 저감에 관한 연구 (A study on Reduction of Cogging Torque for BLDC Motor Using Response Surface Methodology Optimization)

  • 김영균;이근호;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권2호
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents an optimization procedure by using Response Surface Methodology(RSM) to determine design parameters for reducing cogging torque. RSM is achieved through using the experimental design method in combination with Finite Element Method and adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

유전알고리즘과 반응표면법을 이용한 BLDC 전동기용 영구자석 최적설계 (Optimum Design of BLDC Motor Magnet Using Genetic Algorithm and Response Surface Method)

  • 김창업;전문호
    • 조명전기설비학회논문지
    • /
    • 제18권6호
    • /
    • pp.152-157
    • /
    • 2004
  • 본 논문에서는 유전알고리즘, 반응표면법을 이용하여 BLDC 전동기의 코깅 토크를 최소화 하기 위한 최적화 설계 방법을 제안하였다. 유전알고리즘, 반응표면법을 이용하여 BLDC 전동기의 설계변수를 추론하고 유한요소법으로 코깅 토크를 구하였다. 유전알고리즘, 반응표면법을 유한요소법과 결합하여 사용함으로써 BLDC 전동기의 코깅 토크를 최소로 하는 영구자석의 형상을 보다 빠르고 정확하게 구할 수 있었다.

반응표면분석법(RSM)을 이용한 골탄의 불소 흡착 조건 최적화 (Optimization of Fluoride Adsorption on Bone Char with Response Surface Methodology (RSM))

  • 황지연;;;김준영;최영균;신귀암
    • 적정기술학회지
    • /
    • 제5권2호
    • /
    • pp.82-90
    • /
    • 2019
  • 반응표면분석법(Response surface methodology, RSM)의 Box-Benhken Design (BBD) 모델을 사용하여, 350℃로 가열한 골탄의 수중 불소 흡착 조건을 최적화하였다. 최적화 변수로 수온, pH, 접촉시간, 초기불소농도를 선택하였고, Box-Behnken Design에 의한 29회의 매트릭스 실험값으로부터 2차 반응 표면식을 얻었다. 이 반응 모델식의 결정계수(R2)는 0.9249였고 모델의 p-value는 <0.0001로 나타나 실험 변수들이 흡착결과에 매우 유의미한 영향을 미친다는 것을 알 수 있었다. 반응 표면식에 의해 예측된 골탄의 불소 흡착 최적 조건은 수온 39.68℃, pH 6.25, 접촉시간 88.81 min, 초기불소농도 14.64 mgF/L이었으며 이때의 불소 흡착용량(adsorption capacity)은 6.46 mgF/g인 것으로 분석되었다.

반응표면기법을 이용한 원심펌프 임펠러 최적설계 및 벌류트 설계 (Design Optimization of a Centrifugal Pump Impeller using RSM and Design of Volute)

  • 편권범;김준형;최영석;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected, and effect of the design parameters on the performance of the pump was analyzed by using Response Surface Methodology(RSM) to optimized impeller. In addition, total pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구 (A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor)

  • 서정민;박준영;최범석
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

Probabilistic shear-lag analysis of structures using Systematic RSM

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.507-518
    • /
    • 2005
  • In the shear-lag analysis of structures deterministic procedure is insufficient to provide complete information. Probabilistic analysis is a holistic approach for analyzing shear-lag effects considering uncertainties in structural parameters. This paper proposes an efficient and accurate algorithm to analyze shear-lag effects of structures with parameter uncertainties. The proposed algorithm integrated the advantages of the response surface method (RSM), finite element method (FEM) and Monte Carlo simulation (MCS). Uncertainties in the structural parameters can be taken into account in this algorithm. The algorithm is verified using independently generated finite element data. The proposed algorithm is then used to analyze the shear-lag effects of a simply supported beam with parameter uncertainties. The results show that the proposed algorithm based on the central composite design is the most promising one in view of its accuracy and efficiency. Finally, a parametric study was conducted to investigate the effect of each of the random variables on the statistical moment of structural stress response.