• Title/Summary/Keyword: response spectrum analysis method

검색결과 353건 처리시간 0.028초

해석방법이 현수교 지진응답에 미치는 영향 (Effect of Analysis Method on Seismic Response for a Suspension Bridge)

  • 김호경;유동호;이동일;이재홍
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.422-429
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response the response spectrum method vs. the linear dynamic analysis method and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities md the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

  • PDF

응답스펙트럼 해석법을 이용한 건축 구조물의 바닥진동해석 (The Estimation of the Floor Vibration in Structure for Application of Response Spectrum Analysis Method)

  • 이동근;김태호
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.169-178
    • /
    • 1998
  • 일반적으로 응답스펙트럼 해석법은 지지해석에 널리 쓰이고 있지만 동적하중에 의한 구조물의 진동해석은 주로 시간이력해석에 의존한다. 그러나 시간이력해석법은 응답스펙트럼 해석법에 비하여 복잡하며 어렵고 또한 시간이 많이 소요된다 따라서본 논문에서는 응답스펙트럼 해석법을 이용하여 구조물의 연직 최대 응답을 예상하는 방법을 연구하였다 이를 위하여 우선 지지해석에서 응답스펙트럼 해석법과 시간이력해석법에 의하여 구조물의 최대응답을 구하여 비교하였으며 동적하중에 대한 응답스펙트럼 해석을 수행하는 과정을 나타내었다. 마지막으로 제안된 방법과 시간이력해석에 의한 결과를 비교하였다.

  • PDF

A response spectrum method for seismic response analysis of structures under multi-support excitations

  • Li, Jian-Hua;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제21권3호
    • /
    • pp.255-273
    • /
    • 2005
  • Based on the random vibration theory, a response spectrum method is developed for seismic response analysis of linear, multi-degree-of-freedom structures under multi-support excitations is developed. Various response quantities, including the mean and variance of the peak response, the response mean frequency, are obtained from proposed combination rules in terms of the mean response spectrum. This method makes it possible to apply the response spectrum to the seismic reliability analysis of structures subjected to multi-support excitations. Considering that the tedious numerical integration is required to compute the spectral parameters and correlation coefficients in above combination rules, this paper further offers simplified procedures for their computation, which enhance dramatically the computational efficiency of the suggested method. The proposed procedure is demonstrated for tow numerical examples: (1) two-span continuous beam; (2) two-tower cabled-stayed bridge by using Monte Carlo simulation (MC). For this purpose, this paper also presents an approach to simulation of ground motions, which can take into account both mean and variation properties of response spectrum. Computed results based on the response spectrum method are in good agreement with Monte Carlo simulation results. And compared with the MSRS method, a well-developed multi-support response spectrum method, the proposed method has an incomparable computational efficiency.

구조물의 연직진동해석을 위한 응답 스펙트럼 해석법의 활용 (Application of Response Spectrum Analysis Method for the Estimation of the Vertical Vibration in Structures)

  • 이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.12-19
    • /
    • 1998
  • Response spectrum analysis method is widely used for seismic analysis of building structure. Analysis of structural vibration for equipment, machine and moving loads are executed by time history analysis. This method is very complex, difficult and tedious. In this study, maximum response of structure for this case are simply and fast. calculated by mode shape and response spectrum for excitation. At first, Response spectrum and time history analysis for some earthquake is carried and investigate the error of maximum displacement response for R. S. A. Secondly, The process for response spectrum analysis in excitation are calculated, and maximum model response are combined by CQC (Complete Quadratic Combination) methods. Finally, Combining maximum displacement response is compared with one of time history analysis.

  • PDF

가상고정점기법이 적용된 잔교식 구조물의 응답스펙트 럼해석법 개선사항 도출 연구 (Study on the Improvement of Response Spectrum Analysis of Pile-supported Wharf with Virtual Fixed Point)

  • 윤정원;한진태
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.311-322
    • /
    • 2018
  • As a method of seismic-design for pile-supported wharves, equivalent static analysis, response spectrum analysis, and time history analysis method are applied. Among them, the response spectrum analysis is widely used to obtain the maximum response of a structure. Because the ground is not modeled in the response spectrum analysis of pile-supported wharves, the amplified input ground acceleration should be calculated by ground classification or seismic response analysis. However, it is difficult to calculate the input ground acceleration through ground classification because the pile-supported wharf is build on inclined ground, the methods to calculate the input ground acceleration proposed in the standards are different. Therefore, in this study, the dynamic centrifuge model tests and the response spectrum analysis were carried out to calculate the appropriate input ground acceleration. The pile moment in response spectrum analysis and the dynamic centrifuge model tests were compared. As a result of comparison, it was shown that the response spectrum analysis results using the amplified acceleration in the ground surface were appropriate.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

응답스펙트럼법에 의한 고층 건축물의 탄소성 지진응답해석법 (Nonlinear Response Analysis of Multi-Degree-of-Freedom Building Structures Using Response Spectrum Method)

  • 전대한
    • 한국지진공학회논문집
    • /
    • 제1권4호
    • /
    • pp.1-9
    • /
    • 1997
  • 본 논문은 고층건물의 지진응답해석에서 탄성 및 탄소성 응답스펙트럼 해석법에 대하여 고찰한 것이다. 선형 구조물의 지진응답 해석에 널리 사용되고 있는 응답스펙트럼법은 여러 연구자들에 의해 서로 다른 모드 조합방법으로 제안되었으며, 이들 조합방법에 따른 차이점을 상세히 검토하였다. 탄소성 지진응답해석에 응답스펙트럼법은 아직 널리 사용되고 있지 못한 실정이다. 본 연구에서는 장주기를 갖는 고층 건물의 탄소성 지진응답해석에 응답스펙트럼을 확장하여 적용하는 방법을 제시한다. 본 논문에서 제안한 탄소성 응답스펙트럼법을 이용하면, 고층건물의 예비 설계에서 시간이력해석 대신으로 보다 간편히 탄소성 응답치를 예측하는 도구로서 활용할 수 있을 것으로 사료된다.

  • PDF

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

응답스펙트럼에 의한 트러스 구조물의 내진해석 (Seismic Analysis of 3D-Truss by Response Spectrum)

  • 안주옥;이승재
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

현수교의 지진응답 평가 (Evaluation of Seismic Response for a Suspension Bridge)

  • 김호경;유동호;주석범
    • 한국지진공학회논문집
    • /
    • 제7권1호
    • /
    • pp.57-63
    • /
    • 2003
  • 현수교의 지진응답 산정 시 몇 가지 해석법 간에 발생될 수 있는 차이를 파악하고자 하나의 예제 현수교에 대해 비교 연구를 수행하였다. 주된 검토항목은 선형과 비선형 응답응답스펙트럼법과 동적해석법, 그리고 감쇠율과 감쇠고려 방안이다. 검토 결과 대상 물리량이나 가진 방향에 따라 약간의 차이는 있지만 전체적으로 감쇠율과 감쇠 고려방안 등 감쇠와 관련된 변수가 지진응답에 큰 영향을 미치고 있음을 확인하였다. 반면 응답스펙트럼과 동적해석법, 선형 및 비선형해석법 등 구조해석법에 관련된 변수는 상대적으로 지진응답에 미치는 영향이 적은 것으로 확인되었다. 대상 현수교의 경우에도 응답스펙트럼법이 안전측의 결과를 줄 수 있을 것으로 기대되지만 이 경우 도로교설계기준에 제시된 설계응답스펙트럼을 감쇠율에 따라 적절히 보정하는 사전 작업이 필요랄 것으로 판단되었다.