• Title/Summary/Keyword: response parameters

Search Result 4,012, Processing Time 0.029 seconds

The Response Improvement of PD Type FLC System by Self Tuning (자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선)

  • Choi, Hansoo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Mesic, Esad
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.555-581
    • /
    • 2018
  • The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. Global response of a moment-resistant frame structure strongly depends on connections behavior, which can significantly influence the response and load-bearing capacity of a steel frame structure. The analysis of a steel frame with included joints behavior is the main focus of this work. In particular, we analyze the behavior of two connection types through experimental tests, and we propose numerical beam model capable of representing connection behavior. The six experimental tests, under monotonic and cyclic loading, are performed for two different types of structural connections: end plate connection with an extended plate and end plate connection. The proposed damage-plasticity model of Reissner beam is able to capture both hardening and softening response under monotonic and cyclic loading. This model has 18 constitutive parameters, whose identification requires an elaborate procedure, which we illustrate in this work. We also present appropriate loading program and arrangement of measuring equipment, which is crucial for successful identification of constitutive parameters. Finally, throughout several practical examples, we illustrate that the steel structure connections are very important for correct prediction of the global steel frame structure response.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Damage Prediction in Reinforced Concrete Structures using Modal Response Parameters (진동모드특성치를 이용한 철근콘크리트 구조물의 손상예측)

  • 김정태
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.180-189
    • /
    • 1994
  • A practical methodology to detect and localm da~nagc in rcinforced concrete structures by utilizing modal response parameters of as built and tiamaged states is presented. First, a damage detection algorithm which yields information on the, location of damage directly from changes in mode shapes of structures is outlined. Next, the algorithm is implemented to detec and localize damage in a real, 1 1/3 scale, reinforced concrete structure. A set of pre-damage and post damage modal parameters are used for I he damage detection exercise. The results of the damage prediction show that the proposed algorithm can correctly locate the damage inflicted in the test structure.

Approximate Model of Thrust of Pair-Cross Mill using Axiomatic Design and Response Surface Model (공리설계와 반응표면모델에 의한 형상제어 압연기의 추력모델 개발)

  • Yoo, Jung-Hun;Kang, Yeong-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1270-1275
    • /
    • 2005
  • Rolling process to fabricate a strip with even thickness is significant to enhance the quality of the strip. The thickness of a strip can be effectively controlled by pair-cross mills. However, pair-cross mill generates thrust in the axial direction of roller and causes skewness, deflection, twist and even accidental roll chock failure. Therefore, accurate estimation of the thrust of the pair-cross mill during rolling process is necessary to monitor the failure of roll and the quality of products. An empirical equation given by Mitsubishi Heavy Industry (MHI) is hitherto employed, where the thrust is expressed in terms of rolling force, reduction ratio and crossed angle. However it turns out that the MHI empirical equation provides somehow inaccurate and unsuitable thrust in practical rolling processes. Moreover, we learn that three parameters involved in MHI equation are coupled each other. In this paper, axiomatic design principle is employed to select appropriate parameters involved in approximate equation in order to make parameters uncoupled. A quadratic equation using response surface method with new parameters is suggested. The accuracy of the approximate model is examined by comparing with real experimental data.

Identification of Discrete-Time Low-Order Model from Pulse Response (펄스응답에 의한 저차 이산시간 모델의 식별)

  • Hwang, Jiho;Cha, Seungpyo;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.8
    • /
    • pp.1062-1070
    • /
    • 2018
  • This paper presents a simple identification method for discrete-time low-order model of unknown delay process from pulse response. The key idea is to find the parameters of the model such that the first N moments of the unknown process and the model are equal. We first show that the k-th moment of a process can be determined by the moments of the input and output. The parameters and delay are estimated separately. It is shown that for a given delay, the parameters of the low-order model can be determined by solving linear equations in a matrix form. Delay of the model is estimated such that the integral of the absolute errors (IAE) of the candidate models with possible delays minimizes. The illustrative example shows that the proposed method can directly identify low-order models without order reduction process from a single pulse response.

Design Optimization of Roller Straightening Process for Steel Cord using Response Surface Methodology (반응표면법을 이용한 스틸코드의 롤러교정기 설계 최적화)

  • Lee, Jong-Sup;Huh, Hoon;Lee, Jun-Wu;Bae, Jong-Gu;Kim, Deuk-Tae
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.238-241
    • /
    • 2007
  • A roller straightening process is a metal forming technique to improve the geometric quality of products such as straightness and flatness. The geometrical quality can be enhanced by eliminating unnecessary deformations produced during upstream manufacturing processes and minimizing any detrimental internal stress during the roller straightening process. The quality of steel cords can be achieved by the roller straightening depends the process parameters. Such process parameters are the roll intermesh, the roll pitch, the diameter of rolls, the number of rolls and the applied tension. This paper is concerned with the design optimization of the roller straightening process for steel cords with the aid of elasto-plastic finite element analysis. Effects of the process parameters on the straightness of the steel cord are investigated by the finite element analysis. Based on the analysis results, the optimization of the roller straightening process is performed by the response surface method. The roller straightening process using optimum design parameters is carried out in order to confirm the quality of the final products.

  • PDF

A Structure of Personalized e-Learning System Using On/Off-line Mixed Estimations Based on Multiple-Choice Items

  • Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.5 no.1
    • /
    • pp.51-55
    • /
    • 2009
  • In this paper, we present a structure of personalized e-Learning system to study for a test formalized by uniform multiple-choice using on/off line mixed estimations as is the case of Driver :s License Test in Korea. Using the system a candidate can study toward the license through the Internet (and/or mobile instruments) within the personalized concept based on IRT(item response theory). The system accurately estimates user's ability parameter and dynamically offers optimal evaluation problems and learning contents according to the estimated ability so that the user can take possession of the license in shorter time. In order to establish the personalized e-Learning concepts, we build up 3 databases and 2 agents in this system. Content DB maintains learning contents for studying toward the license as the shape of objects separated by concept-unit. Item-bank DB manages items with their parameters such as difficulties, discriminations, and guessing factors, which are firmly related to the learning contents in Content DB through the concept of object parameters. User profile DB maintains users' status information, item responses, and ability parameters. With these DB formations, Interface agent processes user ID, password, status information, and various queries generated by learners. In addition, it hooks up user's item response with Selection & Feedback agent. On the other hand, Selection & Feedback agent offers problems and content objects according to the corresponding user's ability parameter, and re-estimates the ability parameter to activate dynamic personalized learning situation and so forth.

Application of Response Surface Methodology for Modeling and Optimization of Surface Roughness and Electric Current Consumption in Turning Operation (선삭 작업에서 표면조도와 전류소모의 모델링 및 최적화를 위한 반응표면방법론의 응용)

  • Punuhsingon, Charles S.C.;Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.56-68
    • /
    • 2014
  • This paper presents an experiment on the modeling, analysis, prediction and optimization of machining parameters used during the turning process of the low-carbon steel known as ST40. The parameters used to develop the model are the cutting speed, the feed rate, and the depth of the cut. The experiments were carried out under various conditions, with three level of parameters and two different treatments for each level (with and without a lubricant), to determine the effects of the parameters on the surface roughness and electric current consumption. These effects were investigated using response surface methodology (RSM). A second-order model is used to predict the values of the surface roughness and the electric current consumption from the results of experiments which collected preliminary data. The results of the experiment and the predictions of the surface roughness and electric current consumption under both treatments were found to be nearly identical. This result shows that the feed rate is the main factor that influences the surface roughness and electric current consumption.