• 제목/요약/키워드: response parameters

검색결과 4,012건 처리시간 0.031초

강소성 유한요소법과 반응표면분석법을 이용한 박판성헝 공정에서의 비드력 및 다이형상의 설계 (Design of the Bead Force and Die Shape in Sheet Metal Forming Processes Using a Rigid-plastic Finite Element Method and Response Surface Methodology)

  • 김세호;허훈
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.284-292
    • /
    • 2000
  • Optimization of the process parameters is carried out for process design in sheet metal forming processes. The scheme incorporates with a rigid-plastic finite element method for the deformation analysis and response surface methodology for the optimum searching of process parameters. The algorithm developed is applied to design of the draw bead force and the die radius in deep drawing processes of rectangular cups. The present algorithm shows the capability of designing process parameters which enable the prevention of the weak part of fracture during processes.

  • PDF

Sensitivity analysis for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.309-323
    • /
    • 2006
  • In this paper, seismic response of a free-standing ship located in a dry dock and supported by an arrangement of n keel blocks due to base excitation is addressed. Formulation of the problem including derivation of governing equations in various modes of motion as well as transition conditions from one mode to another is given in Moghaddasi and Bargi (2006) by same authors. On the base of numerical solution for presented formulation, several numbers of analyses are conducted to study sensitivity of system's responses to some major contributing parameters. These parameters include friction coefficients between contacting surfaces, block dimensions, peak ground acceleration, and the magnitude of vertical ground acceleration. Finally, performance of a system with usual parameters normally encountered in design is investigated.

마네킹과 자동차 시트 시스템의 진동 해석 (Free Vibration of Mannequins and Car Seat System)

  • 김성걸;이재형;박기홍;이신영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1621-1626
    • /
    • 2000
  • A simplified modeling approach for occupied car seats was demonstrated to be feasible. The model, consisting of interconnected masses, springs and dampers, was initially broken down into subsystems and experiments conducted to determine approximate values for model parameters. A short study of the effect of changing model parameters on natural frequencies, mode shapes and resonance locations in frequency response functions was given, highlighting the influence of particular model parameters on features in the mannequin's vibration response. Good agreement between experimental and simulation frequency response estimates was obtained. Future work should include optimization of parameter estimates, the inclusion of viscoelastic and nonlinear elements in addition to the linear springs and dampers, and finally extensions to a 3D model.

  • PDF

유한요소법을 이용한 진동요소의 요추에 미치는 영향해석 (EFFECT OF VIBRATION ON LUMBAR SPINE MECHANICS)

  • 박호상
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.103-106
    • /
    • 1991
  • A three-dimensional finite element model of a ligamentous two motion segments (L4-S1) was developed to investigate its dynamic response. A number of parameters like the intradiscal pressure, forces in ligaments. and across facet joints in response to a sinusoidal axial compression force (-360 N to -440 N at 5 Hz) were predicted. The increase in the parameters varied from 12% to as high as 50% in comparison to response for a static load of 400 N. The predicted parameters also revealed a distortion and a phase shift in comparison to the applied sinusoidal signal. These changes may lead to degenerative changes seen clinically in persons exposed to a chronic vibration environment over time.

  • PDF

공정변수의 변동을 고려한 만족도 함수를 통한 다중반응표면 최적화 (Multiresponse Optimization Through A New Desirability Function Considering Process Parameter Fluctuation)

  • 권준범;이종석;이상호;전치혁;김광재
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2004년도 추계학술대회 및 정기총회
    • /
    • pp.39-44
    • /
    • 2004
  • A desirability function approach to a multiresponse problem is proposed considering process parameter fluctuation as well as distance-to-target of response and response variance. The variation of process parameters amplifies the variance of responses. It is called POE (propagation of error), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. In order to obtain more robust process parameters, this variability should be considered in the optimization problem. The proposed method is illustrated using a rubber product case.

  • PDF

주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석 (Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function)

  • 강성구;지태한;유원희;박영필
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

Analytical modeling of masonry infills with openings

  • Kakaletsis, D.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2009
  • In order to perform a step-by-step force-displacement response analysis or dynamic time-history analysis of large buildings with masonry infilled R/C frames, a continuous force-deformation model based on an equivalent strut approach is proposed for masonry infill panels containing openings. The model, which is applicable for degrading elements, can be implemented to replicate a wide range of monotonic force-displacement behaviour, resulting from different design and geometry, by varying the control parameters of the model. The control parameters of the proposed continuous model are determined using experimental data. The experimental program includes fifteen 1/3-scale, single-story, single-bay reinforced concrete frame specimens subjected to lateral cyclic loading. The parameters investigated include the shape, the size, the location of the opening and the infill compressive strength. The actual properties of the infill and henceforth the characteristics needed for the diagonal strut model are based on the assessment of its lateral resistance by the subtraction of the response of the bare frame from the response of the infilled frame.

회로 특성 파라미터에 근거한 전력 증폭기의 비선형 응답 특성 (Analysis of Power Amplifier Nonlinear Response Based on Practical Circuit Parameters)

  • 박용국;김형석
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.721-725
    • /
    • 2012
  • In this paper, a novel analysis on the nonlinear response of a power amplifier (PA) with the intermodulation distortion (IMD) asymmetry is proposed based on the mutislice behavioral model. The coefficients of the odd-order and even-order polynomial of that model are represented with the PA practical circuit parameters such as intercept points, gain and amplitudes of excitation inputs. We also develop the analytic expressions to distinguish baseband frequency effect from second harmonic effect on the IMD asymmetry. We also validate the derived analytic expressions through measurements.

반응표면법을 이용한 고속 주행용 실외 경비로봇의 현가장치 근사 최적화 (Approximate Optimization of Suspension Mechanism for Outdoor Security Robot using Response Surface Methodology)

  • 고두열;정해관;우춘규;김수현
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.135-142
    • /
    • 2010
  • Security robot has gradually developed and deployed in order to protect civilian's lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.