• Title/Summary/Keyword: response parameters

Search Result 4,012, Processing Time 0.033 seconds

Optimal Design of a Parallel-Flow Heat Exchanger by Using a Response Surface Method (반응표면법을 이용한 평행류 열교환기의 설계인자 최적화)

  • Oh, Seok-Jin;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1028-1033
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to predict its performance approximately with respect to design parameters over design domain. Design parameters are inflow and outflow angle of the working fluid and horizontal and vertical location of inlet and outlet. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. A JF factor was used as an evaluation characteristic value to consider the heat transfer and the pressure drop simultaneously. The JF factor of the optimum model, compared to that of the base model, was increased by about 5.3%.

  • PDF

Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation (고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정)

  • 이건명
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

A study of response control on the passive coupling element between two parallel structures

  • Zhu, Hongping;Iemura, Hirokazu
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.383-396
    • /
    • 2000
  • A new structure-vibration-control approach is proposed which uses a passive coupling element between two parallel structures to reduce the seismic response of a system due to earthquake excitation. Dynamic characteristics of the two coupled single-degree-freedom systems subject to stationary white-noise excitation are examined by means of statistical energy analysis (SEA) techniques. Optimal parameters of the passive coupling element such as damping and stiffness under different circumstances are determined with an emphasis on the influence of the structural parameters of the system on the optimal parameters and control effectiveness. Numerical results including the root mean square values of the response due to the filtered white-noise excitation and the time-histories of response to El Centro 1940 NS excitation are presented.

Dynamic response analysis for structures with interval parameters

  • Chen, Su Huan;Lian, Hua Dong;Yang, Xiao Wei
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.299-312
    • /
    • 2002
  • In this paper, a new method to solve the dynamic response problem for structures with interval parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

Calibration of the Broadband Sensor(STS-2) using the Step Method (스텝방법을 이용한 광대역지진계 센서(STS-2)의 검증)

  • 류용규;이덕기;이전희;오석훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.11-18
    • /
    • 2001
  • A close examination of the step calibrations for STS-2 seismometers installed by KMA has been done to deduce the response parameters of those instrument including angular corner frequency, damping factor and coil constant factor. A non-linear least square inversion method has been apple iud to estimate these parameters. The estimated parameters coincide with the manufactory specification with less than 1% error. This method will be extended near- future to deduce the response parameters for SS-1 short period seismometer.

  • PDF

Effect of Analysis Method on Seismic Response for a Suspension Bridge (해석방법이 현수교 지진응답에 미치는 영향)

  • 김호경;유동호;이동일;이재홍
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.422-429
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response the response spectrum method vs. the linear dynamic analysis method and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities md the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

  • PDF

Dynamic interaction effects of buried structures on seismic response of surface structures

  • Sisman, Rafet;Ayvaz, Yusuf
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • This study presents an investigation of the dynamic interactions between a surface structure lying on two different soil deposits and a square-shaped buried structure embedded in the soil. To this end, a large number of numerical models are generated by using a well-known Finite Element Method software, i.e., OpenSEES. The interaction phenomenon is assumed to be affected by six different parameters. In the parametric study, these parameters are assumed to have various values in accordance with the engineering practices. A total of 1620 possible combinations of the parameter values are addressed in this study. 30 different numerical models are also generated as the 'free-field cases' to set a reference. The surface structure drift and acceleration amplifications are used as a measure to evaluate the dynamic interactions. The response (i.e., drifts and accelerations) amplifications are calculated as the ratio of the maximum surface structure response in any 'case' to the maximum surface structure response in corresponding free-field case. Variation of the response amplifications with any of the investigated parameters is addressed in this paper. The results obtained from the numerical analyses clearly reveal that the presence of a buried structure in the vicinity of a surface structure can cause both amplification and de-amplification of the surface structure responses, depending on the case parameters.