• Title/Summary/Keyword: response functions analysis

Search Result 794, Processing Time 0.029 seconds

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

A RELATIONAL MODEL IN RESPONSE DATA ANALYSIS

  • Lee, Chun-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.953-959
    • /
    • 1999
  • In modern applications of response data analysis, it has been found that there are stimuli which are independent for some com-binations of levels antagonistic for other and synergistic for some other combinations of levels. Obviously the classical models of stimuli re-sponse function fail to portray such inconsistent behaviour of the stim-uli. The classical model also fail to represent response functions of increasingly synergistic stimuli. Thus it has become necessary to build another type of models to represent relations of both synergistic and an-tagonistc for some combination of levels. This paper will propose a new model that can well explain such inconsistent behaviour of two jointly acting stimuli.

Probabilistic analysis of peak response to nonstationary seismic excitations

  • Wang, S.S.;Hong, H.P.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.527-542
    • /
    • 2005
  • The main objective of this study is to examine the accuracy of the complete quadratic combination (CQC) rule with the modal responses defined by the ordinates of the uniform hazard spectra (UHS) to evaluate the peak responses of the multi-degree-of-freedom (MDOF) systems subjected to nonstationary seismic excitations. For the probabilistic analysis of the peak responses, it is considered that the seismic excitations can be modeled using evolutionary power spectra density functions with uncertain model parameters. More specifically, a seismological model and the Kanai-Tajimi model with the boxcar or the exponential modulating functions were used to define the evolutionary power spectral density functions in this study. A set of UHS was obtained based on the probabilistic analysis of transient responses of single-degree-of-freedom systems subjected to the seismic excitations. The results of probabilistic analysis of the peak responses of MDOF systems were obtained, and compared with the peak responses calculated by using the CQC rule with the modal responses given by the UHS. The comparison seemed to indicate that the use of the CQC rule with the commonly employed correlation coefficient and the peak modal responses from the UHS could lead to significant under- or over-estimation when contributions from each of the modes are similarly significant.

A Gaussian process-based response surface method for structural reliability analysis

  • Su, Guoshao;Jiang, Jianqing;Yu, Bo;Xiao, Yilong
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.549-567
    • /
    • 2015
  • A first-order moment method (FORM) reliability analysis is commonly used for structural stability analysis. It requires the values and partial derivatives of the performance to function with respect to the random variables for the design. These calculations can be cumbersome when the performance functions are implicit. A Gaussian process (GP)-based response surface is adopted in this study to approximate the limit state function. By using a trained GP model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis with a FORM, thereby reducing the number of stability analysis calculations. This dynamic renewed knowledge source can provide great assistance in improving the predictive capacity of GP during the iterative process, particularly from the view of machine learning. An iterative algorithm is therefore proposed to improve the precision of GP approximation around the design point by constantly adding new design points to the initial training set. Examples are provided to illustrate the GP-based response surface for both structural and non-structural reliability analyses. The results show that the proposed approach is applicable to structural reliability analyses that involve implicit performance functions and structural response evaluations that entail time-consuming finite element analyses.

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

Transient Analysis and Leakage Detection Algorithm using GA and HS algorithm for a Pipeline System

  • Kim Sang-Hyun;Yoo Wan-Suk;Oh Kwang-Jung;Hwang In-Sung;Oh Jeong-Eun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.426-434
    • /
    • 2006
  • The impact of leakage was incorporated into the transfer functions of the complex head and discharge. The impedance transfer functions for the various leaking pipeline systems were also derived. Hydraulic transients could be efficiently analyzed by the developed method. The simulation of normalized pressure variation using the method of characteristics and the impulse response method shows good agreement to the condition of turbulent flow. The leak calibration could be performed by incorporation of the impulse response method with Genetic Algorithm (GA) and Harmony Search (HS). The objective functions for the leakage detection can be made using the pressure-head response at the valve, or the pressure-head or the flow response at a certain point of the pipeline located upstream from the valve. The proposed method is not constrained by the Courant number to control the numerical dissipation of the method of characteristics. The limitations associated with the discreteness of the pipeline system in the inverse transient analysis can be neglected in the proposed method.

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Comparative Study on Active Control Algorithms through Weighting functions (가중함수에 따른 능동제어 알고리듬의 비교 연구)

  • 민경원;김성춘;황성호;정진옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.431-438
    • /
    • 2000
  • The cost function consists of the weighting functions concerning the structural responses to be controlled and the controller capability. Therefore, the control efficiency depends on the characteristics of the weighting functions. The objective of this paper is the comparative study of the time domain control strategies of LQR and LQG and the frequency domain strategy of H₂ by setting the equivalent weighting functions to the all control strategies. As a result of analysis, LQR strategy is found to be more efficient than other strategies in terms of the response reduction. but the control force is found to be a little highter. As LQG can compensate the limitation of LQR that all state variables should be identified, LQG is more acceptable algorithm than LQR. Furthermore LQG shows a good performance both in the response reduction and the control force. Finally H₂ algorithm is employed to illustrate the importance of weighting filters considering the frequency characteristics of the response and the controller. It Is shown that the H₂ algorithm is found to be the most effective one for the response control with a little control force having a low frequency band.

  • PDF

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

A Research Study on the Medical-spaces Setting of Mobile-hospitals for Emergency Medical Response (긴급 의료 대응을 위한 이동형병원의 의료공간 설정에 관한 조사 연구)

  • Kim, Sung Hyun;Yang, Nae Won
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.28 no.1
    • /
    • pp.7-21
    • /
    • 2022
  • Purpose: As the pandemic period continues, various attempts are being made to new medical spaces in the medical society. Many hospitals, including existing general hospitals, have been effected by infected patients and are showing limitations in patient care capacity. Mobile-hospitals may be the starting point for the development of new environment in the medical society and healthcare facilities which are not replacing the role of existing hospitals. Mobile-hospitals can possibly respond to situations that require medical services and provide emergency care for various demands in connection with existing healthcare facilities. Methods: Through a total of five investigations/analysis, medical functions that can be inserted into mobile-hospitals based on modular architecture are set. The first is the analysis of domestic legal guidelines, the second is the analysis of previous studies, the analysis of emergency medical facilities and other medical spaces of hospitals to be compared, the fourth is the analysis of medical spaces of actual mobile hospital projects. Results: Through five analyses, medical functions applicable to the modular building platform were finally established. Mobile hospitals can be used not only in disaster sites such as infectious diseases, but also in medical underprivileged areas or general hospitals. Therefore, it is necessary to establish medical functions that meet the specificity of mobile hospitals along with the functions of existing fixed medical facilities. Furthermore, various studies such as use in international aid, use in normal times, and connection with other platform-based medical facilities are considered necessary. Implications: Through 5 strategies of analysis, 41 medical functions which can be applied to UNIT are decided and these functions will be placed where medical services will be required.