• Title/Summary/Keyword: response factors

Search Result 4,604, Processing Time 0.04 seconds

Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, Omprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.209-224
    • /
    • 2017
  • Elevated water tanks are considered as important structures due to its post-earthquake requirements. Elevated water tank on reinforced concrete frame staging is widely used in India. Different response reduction factors depending on ductility of frame members are used in seismic design of frame staging. The study on appropriateness of response reduction factor for reinforced concrete tank staging is sparse in literature. In the present paper a systematic study on estimation of key components of response reduction factors is presented. By considering the various combinations of tank capacity, height of staging, seismic design level and design response reduction factors, forty-eight analytical models are developed and designed using relevant Indian codes. The minimum specified design cross section of column as per Indian code is found to be sufficient to accommodate the design steel. The strength factor and ductility factor are estimated using results of nonlinear static pushover analysis. It was observed that for seismic design category 'high' the strength factor has lesser contribution than ductility factor, whereas, opposite trend is observed for seismic design category 'low'. Further, the effects of staging height and tank capacity on strength and ductility factors for two different seismic design categories are studied. For both seismic design categories, the response reduction factors obtained from the nonlinear static analysis is higher than the code specified response reduction factors. The minimum dimension restriction of column is observed as key parameter in achieving the desired performance of the elevated water tank on frame staging.

The Exercise Capacity and Cardiovascular Factors in Patients with Exaggerated Blood Pressure Response during Treadmill Exercise Testing

  • Bae, Hyung-Joon;Shin, Kyung A
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.4
    • /
    • pp.138-144
    • /
    • 2011
  • Exaggerated blood pressure response during exercise has been found to increase the risk of future hypertension, left ventricular hypertrophy, cerebrovascular stroke, and CVD (cardiovascular disease) death. The aim of this study was to evaluate exercise capacity, cardiovascular factors in exaggerated blood pressure response during treadmill exercise testing. For research subjects, 72 subjects (normal blood response: 49 subjects, exaggerated blood response: 23 subjects) who received treadmill exercise test at J General Hospital were selected in this study. Exaggerated SBP (systolic blood pressure) response was defined as an SBP of 210 mmHg or greater during a maximal treadmill exercise test. The group with an exaggerated SBP response showed significantly higher values for RPP (rate pressure product) compared with the group with a normal SBP response. Subjects with METs (metabolic equivalents) had lower exaggerated SBP response than normal SBP response group. Subjects with recovery SBP had delayed exaggerated SBP response than normal SBP response group. Exaggerated SBP response to exercise is negative correlation with METs.

  • PDF

Behavior Factor of a Steel Box Bridge with Single Column Piers (단주교각 강박스교량의 거동계수)

  • 박준봉;김종수;국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

Robust Parameter Design Based on Back Propagation Neural Network (인공신경망을 이용한 로버스트설계에 관한 연구)

  • Arungpadang, Tritiya R.;Kim, Young Jin
    • Korean Management Science Review
    • /
    • v.29 no.3
    • /
    • pp.81-89
    • /
    • 2012
  • Since introduced by Vining and Myers in 1990, the concept of dual response approach based on response surface methodology has widely been investigated and adopted for the purpose of robust design. Separately estimating mean and variance responses, dual response approach may take advantages of optimization modeling for finding optimum settings of input factors. Explicitly assuming functional relationship between responses and input factors, however, it may not work well enough especially when the behavior of responses are poorly represented. A sufficient number of experimentations are required to improve the precision of estimations. This study proposes an alternative to dual response approach in which additional experiments are not required. An artificial neural network has been applied to model relationships between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Training, validating, and testing a neural network with empirical process data, an artificial data based on the neural network may be generated and used to estimate response functions without performing real experimentations. A drug formulation example from pharmaceutical industry has been investigated to demonstrate the procedures and applicability of the proposed approach.

A Literature Review on Balance Control Factors (균형조절 요인에 관한 고찰)

  • Lee, Han-Suk;Choi, Houng-Sik;Kwon, Oh-Yun
    • Physical Therapy Korea
    • /
    • v.3 no.3
    • /
    • pp.82-91
    • /
    • 1996
  • Normal balance is defined as state in which the body is equlilibrium. It is complex motor control task, requring integration of sensory information, neural processing, and biomechanical factors. There are major two factors contribute to balance control, the neurological and the musculoskeletal. The neurological factor provides the sensory processing and motor output mechanisms that are the neurophysiological basis for response. The musculoskeletal factor provides the mechanical structure for response. When all components of two factors are operating effectively, the postural response should be appropriate and effective for good balance control. Therfore, balance can be influenced by above all factors. In addition, balance can be also influenced by muscle tone, hearing, physiological factors, and environmental factors. Physical therapists must understand factors of balance control so that we can accurately assess balance. Therefore, physical therapists have to develop useful balance measurement tools to evaluate balance.

  • PDF

User Response to Mobile Payment System: Emotional, Cognitive, and Behavioral Approaches (모바일 간편결제시스템 사용의 감성적, 인지적, 행동적 반응 과정 연구)

  • Choi, Yoo-Jung;Hwangbo, Hyunwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1158-1164
    • /
    • 2022
  • In this study, the emotional reaction process and the cognitive reaction process were divided into the process of building trust in order to form a continuous use intention in the process of using the mobile simple payment system. We examined the process by which various external factors generate continuous use intentions, that is, behavioral responses through the process of each reaction. External factors were divided into social factors, systemic factors, and social factors. Among them, system factors were social norms and images, and systemic factors were simplicity and accessibility. And the social factors consisted of security and compatibility. And the emotional response was set as pleasure and emotional trust, the cognitive response was cognitive trust, and the final dependent variable was set as continuous use intention. A survey was conducted for model analysis, and the analysis results were derived using PLS.

The Effect of Repurchase Intention on Baker Shop Customer's Service Quality Satisfaction (베이커리 이용객의 서비스 품질 만족도가 재 구매에 미치는 영향)

  • Kim, Yong-Sik;Park, Sang-Jun
    • Culinary science and hospitality research
    • /
    • v.11 no.3 s.26
    • /
    • pp.40-55
    • /
    • 2005
  • The purpose of this study was to understand the effect of customers' repurchase intention, extract important factors, systematically analyze them and suggest the direction of bakery industry through studying the customers' satisfaction with bakeries. The researcher modified the questionnaire developed by Park, CH(1998), Lee, JH(2000), Yoon, YC(2000), and Kim SE(2002). In order to assess the level of customers' satisfaction with bakeries, a five point Likert scale was used. The used statistical methods for the data analysis were frequency analysis, reliability analysis, t-test factor analysis, ANOVA, multiple regression analysis. For all analyses of the research question, an alpha level of.05 was used. The major findings obtained from this study were as fellows. First on the factors of reliability and service ability, there was a high difference between males and females, and singles and the married. Second, on the factors of accessibility using convenience, service ability, and service response, there was a high difference among using frequence. Third, on the reliability factors, there was a high difference among average using amount per month. Forth, on the factors of accessibility using convenience, and service response, there was a high difference among types of customers' residing styles. Fifth, on the factors of income level, there was statistically no difference. Lastly, on the factors of accessibility using convenience, tangibleness, and service response, these factors significantly influenced customers' repurchase intention.

  • PDF

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF

Response modification factor of dual moment-resistant frame with buckling restrained brace (BRB)

  • Abdollahzadeh, Gholamreza;Banihashemi, Mohammadreza
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.621-636
    • /
    • 2013
  • Response modification factor is one of the seismic design parameters to consider nonlinear performance of building structures during strong earthquake, in conformity with the point that many seismic design codes led to reduce the loads. In the present paper it's tried to evaluate the response modification factors of dual moment resistant frame with buckling restrained braced (BRB). Since, the response modification factor depends on ductility and overstrength; the nonlinear static analysis, nonlinear dynamic analysis and linear dynamic analysis have been done on building models including multi-floors and different brace configurations (chevron V, invert V, diagonal and X bracing). The response modification factor for each of the BRBF dual systems has been determined separately, and the tentative value of 10.47 has been suggested for allowable stress design method. It is also included that the ductility, overstrength and response modification factors for all of the models were decreased when the height of the building was increased.

Seismic behavior factors of buckling-restrained braced frames

  • Kim, Jinkoo;Park, Junhee;Kim, Sang-Dae
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.261-284
    • /
    • 2009
  • The seismic behavior of a framed structure with chevron-type buckling restrained braces was investigated and their behavior factors, such as overstrength, ductility, and response modification factors, were evaluated. Two types of structures, building frame systems and dual systems, with 4, 8, 12, and 16 stories were designed per the IBC 2003, the AISC LRFD and the AISC Seismic Provisions. Nonlinear static pushover analyses using two different loading patterns and incremental dynamic analysis using 20 earthquake records were carried out to compute behavior factors. Time history analyses were also conducted with another 20 earthquakes to obtain dynamic responses. According to the analysis results, the response modification factors turned out to be larger than what is proposed in the provision in low-rise structures, and a little smaller than the code-values in the medium-rise structures. The dual systems, even though designed with smaller seismic load, showed superior static and dynamic performances.