• Title/Summary/Keyword: respiratory inhibitor

Search Result 191, Processing Time 0.021 seconds

A systematic exploration of ginsenoside Rg5 reveals anti-inflammatory functions in airway mucosa cells

  • Hyojin Heo;Yumin Kim;Byungsun Cha;Sofia Brito;Haneul Kim;Hyunjin Kim;Bassiratou M. Fatombi;So Young Jung;So Min Lee;Lei Lei;Sang Hun Lee;Geon-woo Park;Byeong-Mun Kwak;Bum-Ho Bin;Ji-Hwan Park;Mi-Gi Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Background: Hyperactivated airway mucosa cells overproduce mucin and cause severe breathing complications. Here, we aimed to identify the effects of saponins derived from Panax ginseng on inflammation and mucin overproduction. Methods: NCI-H292 cells were pre-incubated with 16 saponins derived from P. ginseng, and mucin overproduction was induced by treatment with phorbol 12-myristate 13-acetate (PMA). Mucin protein MUC5AC was quantified by enzyme-linked immunosorbent assay, and mRNA levels were analyzed using quantitative polymerase chain reaction (qPCR). Moreover, we performed a transcriptome analysis of PMA-treated NCI-H292 cells in the absence or presence of Rg5, and differential gene expression was confirmed using qPCR. Phosphorylation levels of signaling molecules, and the abundance of lipid droplets, were measured by western blotting, flow cytometry, and confocal microscopy. Results: Ginsenoside Rg5 effectively reduced MUC5AC secretion and decreased MUC5AC mRNA levels. A systematic functional network analysis revealed that Rg5 upregulated cholesterol and glycerolipid metabolism, resulting in the production of lipid droplets to clear reactive oxygen species (ROS), and modulated the mitogen-activated protein kinase and nuclear factor (NF)-kB signaling pathways to regulate inflammatory responses. Rg5 induced the accumulation of lipid droplets and decreased cellular ROS levels, and N-acetyl-ⳑ-cysteine, a ROS inhibitor, reduced MUC5AC secretion via Rg5. Furthermore, Rg5 hampered the phosphorylation of extracellular signal-regulated kinase and p38 proteins, affecting the NF-kB signaling pathway and pro-inflammatory responses. Conclusion: Rg5 alleviated inflammatory responses by reducing mucin secretion and promoting lipid droplet-mediated ROS clearance. Therefore, Rg5 may have potential as a therapeutic agent to alleviate respiratory disorders caused by hyperactivation of mucosa cells.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Inhibition of Quorum Sensing and Biofilm Formation by Synthetic Quorum Signal Analogues in Pseudomonas aeruginosa (합성된 쿼럼 신호 유사 물질에 의한 녹농균 쿼럼 센싱 및 생물막 형성의 제어)

  • Kim, Soo-Kyoung;Kim, Cheol-Jin;Yoon, Je-Yong;Lee, Joon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2011
  • Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections on urinary track, cornea, respiratory track, and burn wound site, and mainly relies on quorum sensing (QS) for its virulence. To control the infectivity of P. aeruginosa, we previously synthesized the structural analogues of a major QS signal, N-3-oxododecanoyl homoserine lactone (3OC12-HSL) to use as a QS inhibitor. Two of them (5b and 5f) had been confirmed to have an inhibitory effect on LasR, a major QS signal receptor of P. aeruginosa in the screening by the recombinant Escherichia coli reporter. To further evaluate these compounds, we tested their efficacy to control the QS and virulence of P. aeruginosa. Unlike the result from E. coli reporter, both 5b and 5f failed to affect the LasR activity in P. aeruginosa, but instead they selectively affected the activity of QscR, another 3OC12-HSL receptor of P. aeruginosa. Interestingly, their effect on QscR was complex and opposite to what we obtained with E. coli system. Both 5b and 5f enhanced the QscR activity at the low concentration range (< 10 ${\mu}m$), but high concentration of 5f (${\approx}$1 mM) strongly inhibited QscR. While 5b and 5f didn't affect the production of proteases, the key virulence factor, they significantly reduced the biofilm formation that is important in mediating chronic infections. Especially, 5f inhibited the initial attachment of P. aeruginosa, rather than the biofilm maturation. Based on our results, we suggest that 5f can be applied for an anti-biofilm agent without increasing virulence of P. aeruginosa.

Effect of Neutrophil Elastase Inhibitor, lei 200,355, on Interleukin-1 Induced Acute Lung Injury in Rats (Interleukin-1으로 유도된 흰쥐 급성폐손상에서 neutrophil elastase 억제제인 ICI 200,355의 효과)

  • Chung, Jin-Hong;Mun, Yeung-Chul;Park, Hye-Jung;Shin, Kyeong-Cheol;Lee, Kwan-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • Background: Interleukin-1(IL-1) and neutrophil appear to contribute to the pathogenesis of acute respiratory distress syndrome(ARDS). Elastase, as well as reactive oxygen species released from activated neutrophil, are thought to play pivotal roles in the experimental models of acute lung leak. This study investigated whether ICI 200,355, a synthetic elastase inhibitor, can attenuate acute lung injury induced by IL-1 in rats. Materials and Methods: We intratracheally instilled either saline or IL-1 with and without treatment of ICI 200,355 in rats. Lung lavage neutrophils, lung lavage cytokine-induced neutrophil chemoattractant(CINC) concentration, lung lavage protein concentration, lung myeloperoxidase(MPO) activity and lung leak index were measured at 5 hours of intratracheal treatment. Results: In rats given IL-1 intratracheally, lung lavage neutrophils, lung lavage CINC concentration, lung lavage protein concentration, lung MPO activity and lung leak index were higher. Intratracheal ICI 200,355 administration decreased lung lavage neutrophils, lung MFO activity and lung leak index, respectively, but did not decrease lung lavage CINC concentration. Conclusion: These results suggest that ICI 200,355 decreases lung inflammation and leak without decreasing lung lavage CINC concentration in rats given IL-1 intratracheally.

  • PDF

Effect of PLA2 Inhibitor Rutin on Endotoxin-Induced Acute Lung Injury (내독소로 유도된 급성폐손상에서 PLA2의 억제제인 Rutin의 효과)

  • Kim, Seong-Eun;Lee, Young-Man;Park, Won-Hark
    • Applied Microscopy
    • /
    • v.34 no.1
    • /
    • pp.31-42
    • /
    • 2004
  • Acute respiratory distress syndrome (ARDS) is a kind of acute lung injury characterized by inflammatory disruption of alveolar-capillary barrier and notorious for its high mortality. Neutrophils cause cell damage through the production of free radicals, inflammatory mediators, and proteases in ARDS. $PLA_2$ might serve a primary regulatory role in the activation of neutrophils. This present study was performed to elucidate the effect of rutin known as $PLA_2$ inhibitor on ARDS induced by endotoxin. Endotoxin had increased lung myeloperoxidase (MPO) activity, BAL (bronchoalveolar lavage) protein content, numbers of neutrophils in BALF (bronchoalveolar lavage fluid) compared with those of control rat (p<0.001). In addition, histological evidence of lung injury was correlated with neutrophil influx into alveolar space and cerrous perhydroxide granules were found in lining of endothelial cell, alveolar type I, II cells. In contrast, pretreated group of rutin had significantly decreased all of the parameters (p<0.001). These data suggest that inhibition of $PLA_2$ is one step approach that block the process of ARDS. Accordingly, we conclude that rutin can be used as the prophylactic agent for ARDS on the bases of these experimental results.

Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase, $TNF-{\alpha}$, $IL-1{\beta}$ and COX-2 Expression by Flower and Whole Plant of Lonicera japonica (금은화(金銀花) 및 금은화전초(金銀花全草)가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, COX-2 및 cytokine에 미치는 영향)

  • Lee, Dong-Eun;Lee, Jae-Ryung;Kim, Young-Woo;Kwon, Young-Kyu;Byun, Sung-Hui;Shin, Sang-Woo;Suh, Seong-Il;Kwon, Taeg-Kyu;Byun, Joon-Seok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.481-489
    • /
    • 2005
  • Lonicerae Flos has antibacterial effects against Staphylococcus aureus, streptococci, pneumococci, Bacillus dysenterii, Salmonella typhi, and paratyphoid. It is an antiviral agent. The herb has a cytoprotective effect against $CCl_{4}-induced$ hepatic injury. It has antilipemic action, interfering with lipid absorption from the gut. Nowadays this herb is used mainly in the treatment of upper respiratory infections, such as tonsillitis and acute laryngitis. It is also used in the treatment of skin suppurations, such as carbuncles, and to treat viral conjunctivitis, influenza, pneumonia, and mastitis. Lonicerae Flos is dried flower buds of Lonicera japonica, L. hypoglauca, L. confusa, or L. dasystyla. But, for the most part, we use whole plant of Lonicera japonica, as a flower bud of it. And, little is known of the original copy of effects of whole plant, except for the 'Bon-Cho-Gang-Mok', which is written the effects of flower of Lonicera japonica are equal to effects of leaves and branch of it. The present study was conducted to evaluate the effect of flower and whole plant of Lonicera japonica on the regulatory mechanism of cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, flower and whole plant of Lonicera japonica water extracts inhibited nitric oxide production in a dose-dependent manner and abrogated iNOS and COX-2. Flower and whole plant of Lonicera japonica water extract did not affect on cell viability. To investigate the mechanism by which flower and whole plant of Lonicera japonica water extract inhibits iNOS and COX-2 gene expression, we examined the on phosphorylation of inhibitor ${\kappa}B{\alpha}$ and assessed production of $TNF-{\alpha}$, $interleukin-1{\beta}$ $(IL-1{\beta})$ and interleukin-6 (IL-6). Results provided evidence that flower and whole plant of Lonicera japonica inhibited the production of $IL-1{\beta}$, IL-6 and activated the phosphorylation of inhibitor ${\kappa}B{\alpha}$ in Raw 264.7 cells activated with LPS. These findings suggest that flower and whole plant of Lonicera japonica can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections, respectively.

The Role of Uteroglobin in the Immunomodulation of Nonsmall Cell Lung Cancer Cells (비소세포 폐암세포에서 Uteroglobin의 면역 조절 기능에 대한 연구)

  • Yoon, Jung Min;Lim, Jae-Jun;Yoo, Chul-Gyu;Lee, Choon-Taek;Han, Sung Koo;Shim, Young-Soo;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.4
    • /
    • pp.336-344
    • /
    • 2004
  • Background : Immunotherapy for cancer has not been successful because of several obstacles in tumor and its environment. Inappropriate secretions of cytokines and growth factors by tumors cause substantial changes in the immune responses against tumors, affording the tumors some degree of protection from immune attack. Uteroglobin (UG, Clara cell secretory protein) has been known to have anti-inflammatory, immunomodulatory and anti-cancer activities. However, in lung cancer cells, UG expression is decreased. This study investigated the role of UG in the immunomodulation of lung cancer. Methods : The UG protein was overexpressed by Adenovirus(Ad)-UG transduction in non-small cell lung cancer cell lines. The concentration of Prostaglandin $E_2$ ($PGE_2$) was measured by Enzyme Immunoassay (EIA). Peripheral blood mononuclear cells (PBMC) from whole blood were prepared with Ficoll. PBMC were cultured in RPMI 1640, supernatant of A549, or A549 with UG or NS-398. Concentration of Th 1 type and Th 2 type cytokines from PBMC were measured by ELISA. Results : UG suppressed $PGE_2$, Cyclooxygenase-2 (COX-2) product. Both Th1 type such as Interleukin-2 (IL-2), Interferon-${\gamma}$ (IFN-${\gamma}$) and Tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and Th2 type cytokines such as IL-10 and Tumor growth factor-${\beta}$ (TGF-${\beta}$) were increased when PBMC were cultured with supernatant of non small lung cancer cells. UG and COX-2 inhibitor, NS-398 induced normal immune response of PBMC. Although Th 1 type cytokines were increased, Th 2 type cytokines were reduced by UG. Conclusion : UG suppressed PGE2, COX-2 product. Supernatant of NSCLC induced imbalance of immune response of PBMC. However, UG reversed this imbalance. These results suggest that UG may be used in the development of immunotherapy for lung cancer.

The Change of Cell-cycle Related Proteins and Tumor Suppressive Effect in Non-small Cell Lung Cancer Cell Line after Transfection of p16(MTS1) Gene (폐암세포에 p16 (MTS1) 유전자 주입후 암생성능의 변화 및 세포주기관련 단백질의 변동에 관한 연구)

  • Kim, Young-Whan;Kim, Jae-Yeol;Yoo, Chul-Gyu;Han, Sung-Koo;Shim, Young-Soo;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.4
    • /
    • pp.796-805
    • /
    • 1997
  • Background : It is clear that deregulation of cell cycle progression is a hallmark of neoplastic transformation and genes involved in the $G_1$/S transition of the cell cycle are especially frequent targets for mutations in human cancers, including lung cancer. p16 gene product, one of the G1 cell-cycle related proteins, that is recently identified plays an important role in the negative regulation of the the kinase activity of the cyclin dependent kinase (cdk) enzymes. Therefore p16 gene is known to be an important tumor suppressor gene and is also called MTS1 (multiple tumor suppressor 1). No more oncogenes have been reported to be frequently related to multiple different malignancies than the alterations of p16 gene. Especially when it comes to non-small cell lung cancer, there was no expression of p16 in more than 70% of cell lines examined. And also it is speculated that p16 gene could exert a key role in the development of non-small cell lung cancer. This study was designed to evaluate whether p16 gene could be used as a candidate for gene therapy of non-small cell lung cancer. Methods : After the extraction of total RNA from normal fibroblast cell line and subsequent reverse transcriptase reaction and polymerase chain reaction, the amplified p16 cDNA was subcloned into eukaryotic expression plasmid vector, pRC-CMV. The constructed pRC-CMV-p16 was transfected into the NCI-H441 NSCLC cell line using lipofectin. The changes of G1 cell-cycle related proteins were investigated with Western blot analysis and immunoprecipitation after extraction of proteins from cell lysates and tumor suppressive effect was observed by clonogenic assay. Results : (1) p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 showed the formation of p16 : cdk 4 complex and decreased phosphorylated Rb protein, while control cell line did not. (2) Clonogenic assay demonstrated that the number of colony formation was markedly decreased in p16(-) NCI-H441 cell line transfected with pRC-CMV-p16 than the control cell line. Conclusion : It is confirmed that the expression of p16 protein in p16 absent NSCLC cell line with the gene transfection leads to p16 : cdk4 complex formation, subsequent decrease of phosphorylated pRb protein and ultimately tumor suppressive effects. And also it provides the foundation for the application of p16 gene as a important candidate for the gene therapy of NSCLC.

  • PDF

Comparison of Paraquat Actions on Oxygen Radical Generation and Lipid Peroxidation between Submitochondrial Particle and Microsome of Mouse Liver (Paraquat에 의한 산소 Radical 생성 및 지질과산화 작용의 Mouse 간 Submitochondria Particle과 Microsome에서의 비교)

  • Choi, Jung-Hwan;Kim, Yong-Sik;Park, Jong-Hwan;Chung, Myung-Hee;Yunn, Chong-Ku
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.155-166
    • /
    • 1991
  • In order to evaluate a potential role of mitochondria in the mediation of toxicity of paraquat (PQ), submitochondrial particle and microsome of mouse liver were compared by oxygen radical generation and lipid peroxidation. With NADH in submitochondrial particle and NADPH in microsome as electron donors, PQ stimulated production of superoxide anion and $H_2O_2$ in both fractions. Under the same conditions, PQ enhanced the generation of ethylene from methional suggestiong stimulation of OH production by PQ. But these effects by PQ were somewhat lower in submitochondrial particle than in microsome. In addition, lipid peroxidation(measured as MDA production) was stimulated by PQ in both fractions. The stimulation of lipid peroxidation in both fractions seemed to occur by the same mechanism probably through perferryl ion. This was supported by the following findings: i) The lipid peroxidation in both fractions was partially inhibited by SOD and completely inhibited by DETAPAC(an iron chelator) but not by catalase or OH scavenger. ii) Addition of $ADP-Fe^{3+}$ further increased PQ-induced lipid peroxidation but decreased ethylene production from methional suggesting no correlation between OH production and lipid peroxidation. The redox-cycling of PQ in mitochondria appeared to be linked to NADH dehydrogenase, not to CoQ since all of the observed stimulations by PQ in submitochondrial particle were inhibited by p-hydroxymercuribenzoate(a NADH dehydrogenase inhibitor) but not affected by other respiratory chain blockers. The above results demonstrate that redox-cycling properties of PQ leading to oxygen radical generation and lipid peroxidation can also occur in mitochondria in the same manner as in microsome. Therefore, the observed actions of PQ in mitochondria suggest that mitochondria may also contribute to toxicity of this drug in vivo.

  • PDF

Clinical Study of Topotecan as Second-Line Treatment in Small Cell Lung Cancer (소세포폐암의 2차요법으로서의 Topotecan의 치료효과)

  • Kim, Hak-Ryul;Yang, Sei-Hoon;Jeong, Eun-Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.230-240
    • /
    • 2002
  • Background : The majority of chemotherapy-treated small cell lung cancers(SCLC) patients eventually recur. Although many patients are in excellent physical condition at the time of recurrence, few drugs or drug combinations are capable of effecting a tumor regression in this setting. Topotecan, a topoisomerase I inhibitor, is one of the more widely studied single afents in SCLC. The aim of this study was to determine the response rate, survival and toxicity of topotecan as a second line traeatment SCLC. Materials and Methods : 19 patients with measurable SCLC, progressive during the first line chemotherapy (9 cases) or recurrent after the first line chemotherpy(10 cases), were enrolled in this study. Topotecan was administered as a 30-minute daily infusion at a dose of 1.5mg/$m^2$ for 5 consecutive days, every 3 weeks. Results : The overall response rate was 26.3%(5/19, CR 2, PR 3, SD 3, PD 11). The median survival was 24 weeks. The response rate and survival were poor in the nonresponders during first chemotherapy, those who were refractory to the first chemotherapy(recurrent within 3 months after completion of first chemotherapy) and extensive disease, but the results were not statistically significant. The toxicities were mainly hematologic and anemia grade III 1/90, leukopenia grade III 6/90 IV 4/90, thrombocytopenia grade III 1/90 IV 1/90, vomiting grade III 1/90 of cycles were occurred. There was no treatment-related deaths due to severe myelosuppression. Conclusion : Topotecan can be an active second line chemotherapeutic agent for treating SCLC.