• Title/Summary/Keyword: resonant motion

Search Result 150, Processing Time 0.022 seconds

High Precision Measurement for String Resonator used in FBG Strain Sensors (광섬유 브래그 격자 변형률 센서용 현공진기의 고정밀 측정)

  • 이영균;송인천;정성호;이병하;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.135-139
    • /
    • 2001
  • This paper describes a string resonator that is used for the interrogation system of a Fiber Bragg Grating(FBG) strain sensor. The strain on the fiber piece is calculated from the measured frequency based on that the natural frequency of a string is a function of the applied absolute strain. Existing research considered a fiber as a string, but a fiber is not a string in the strict sense due to its bending stiffness, thus the fiber should be modeled as a beam accompanied with an axial force. In the vibration modeling, the relationship between the strain and the natural frequency is derived, and then the resonance condition is described in terms of both the phase and the mode shape for sustaining resonant motion. Several experiments verify the effectiveness of the proposed model of the fiber. The performance of the string resonator is analyzed by measuring the frequency change according to the applied strains in the dynamic range of 1100$\mu\varepsilon$ referred to the displacement from capacitance sensor. From the experimental results, the implemented string resonator provides the accuracy of $\pm$3$\mu\varepsilon$, the quasi-static resolution of ~0.1$\mu\varepsilon$(rms) which amount to be $\pm$0.17$\mu\textrm{m}$ and ~6nm respectively, in case of fiber length of 56mm. For a dynamic strain, it can provide the accuracy of ~3$\mu\varepsilon$ until the frequency comes to 8Hz. As a consequence, the string resonator proposed for FBG sensor provides the high accuracy and the high resolution in strain measurement, and also it is expecting to be used, for the application, to not only strain but also displacement measuring device.

  • PDF

Micromirrors Driven by Detached Piezoelectric Microactuators For Low-voltage and Wide-angle Rotation (저전압 대회전을 위한 분리된 압전 구동기에 의한 미소거울)

  • Kim, Sung-Jin;Jin, Young-Hyun;Lee, Won-Chul;Nam, Hyo-Jin;Bu, Jong-Uk;Cho, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • This paper presents a torsional micromirror detached from PZT actuators (TMD), whose rotational motion is achieved by push bars in the PZT actuators detached from the micromirror. The push bar mechanism is intended to reduce the bending, tensile and torsional constraints generated by the conventional bending bar mechanism, where the torsional micromirror is attached to the PZT actuators (TMA). We have designed, fabricated and tested prototypes of TMDs for single-axis and dual-axis rotation, respectively. The single-axis TMD generates the static rotational angle of $6.1^{\circ}$ at 16 VDC, which is 6 times larger than that of single-axis TMA, $0.9^{\circ}$. However, the rotational response curve of TMD shows hysteresis due to the static friction between the cover and the push bar in the PZT actuator. We have shown that 63.2% of the hysteresis is due to the static friction caused by the initial contact force of the PZT actuaor. Without the initial contact force, the rotational response curve of TMD shows linear voltage-angle characteristics. The dual-axis TMD generates the static rotational angles of $5.5^{\circ}$ and $4.7^{\circ}$ in x-axis and y-axis, respectively at 16 VDC. The measured resonant frequencies of dual-axis TMD are $2.1\pm0.1$ kHz in x-axis and $1.7\pm0.1$ kHz in y-axis. The dual-axis TMD shows stable operation without severe wear for 21.6 million cycles driven by 16 Vp-p sinusoidal wave signal at room temperature.

A Combustion Characteristics of Attached Jet Flame under the Regular Oscillation (규칙적인 진동 하에서 노즐 부착된 제트화염의 연소특성)

  • Kim, Dae-Won;Lee, Kee-Man
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2009
  • A general combustion characteristics of forcing nonpremixed jet in laminar flow rates have been conducted experimentally to investigate the effect of forcing amplitude with the resonant frequency of fuel tube. There are two patterns of the flame lift-off feature according to the velocity increasing; one has the decreasing values of forcing amplitude on the lift-off occurrence when a fuel exit velocity is increasing, while the other has the increasing values. These mean that there are the different mechanisms in the lift-off stability of forced jet diffusion flame. Especially, the characteristics of attached jet flame regime are concentrically observed with flame lengths, shapes, flow response and velocity profiles at the nozzle exit as the central figure. The notable observations are that the flame enlogation, in-homing flame and the occurrence of a vortical motion turnabout have happened according to the increase of forcing amplitude. It is understood by the velocity measurements and visualization methods that these phenomena have been relevance to an entrainment of surrounding oxygen into the fuel nozzle as the negative part of the fluctuating velocity has begun at the inner part of the fuel nozzle.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades

  • Arrigan, John;Huang, Chaojun;Staino, Andrea;Basu, Biswajit;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.177-201
    • /
    • 2014
  • With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

A Proposition of Site Coefficients and Site Classification System for Design Ground Motions at Inland of the Korean Peninsula (국내 내륙의 설계 지반 운동 결정을 위한 지반 증폭 계수 및 지반 분류 체계 제안)

  • Sun Chang-Guk;Chung Choong-Ki;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.101-115
    • /
    • 2005
  • For the site characterization at two inland areas, Gyeongju and Hongsung, which represent geomorphic and geologic characteristics of inland region in Korea, in-situ seismic tests containing borehole drilling investigations and resonant column tests were peformed and site-specific seismic response analyses were conducted using equivalent linear as well as nonlinear scheme. The soil deposits in Korea were shallower and stiffer than those in western US, from which the site coefficients and site classification system in Korea were derived. Most sites were categorized as site classes C and D based on the mean shear wave velocity $(V_s)$ of the upper 30 m $(V_s30)$, ranging between 250 and 650 m/s. According to the acceleration response spectra determined from the site response analyses, the site coefficients specified in the current Korean seismic design guide underestimate the ground motion in the short-period band and overestimate the ground motion in mid-period band. These differences can be explained by the differences in the bedrock depth and the soil stiffness profile between Korea and western US. The site coefficients, $F_a$ for short-period and $F_v$ for mid-period, were re-evaluated and the site classification system, in which sites C and D were subdivided according to $V_s20,\;V_s15,\;and\;V_s10$ together with the existing $V_s30$ was introduced accounting for the local geologic conditions at inland region of the Korean peninsula. The proposed site classification system in this paper is still rudimentary and requires modification.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF