• Title/Summary/Keyword: resonant circuit

Search Result 939, Processing Time 0.031 seconds

Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber (새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성)

  • Sung, Chi-Ho;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

A Study of Clamped-Mode Series Resonant Inverter (클램프드-모드 직렬공진형(直列共振形) 인버터에 관한 연구(硏究))

  • Kim, Pok-Kweon;Park, Jae-Cheul;Lee, Hyun-Woo;Kwon, Soon-Kurl;Suh, Ki-Young
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1161-1164
    • /
    • 1992
  • In this paper demonstrates the possibiity of utilising clamped mode - series resonant converter technology in the high frequency link inverter configuration. Main circuit of the proposed inverter is analyzed through circuit analys and waveform simulation. In control circuit PLL circuit and 8 bit single chip microcontroller is adopted, therefore flexibility and accuracy of control circuit is increased.

  • PDF

Transmitted sound reduction performance of smart panels with different piezoelectric materials through piezo-damping (압전재료에 따른 지능패널의 전달소음저감성능)

  • 이중근;김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.127-132
    • /
    • 2001
  • In this paper, transmitted sound reduction performance of smart panels is studied according to different piezoelectric materials with piezoelectric shunt damping. Peizo-damping is implemented by using a newly proposed tuning method. This method is based on electrical impedance model and maximizing the dissipated energy at the shunt circuit. By measuring the electrical impedance at the piezoelectric patch bonded on a structure, an equivalent electrical model is constructed near the system resonance frequency. After shunting elements are connected to the equivalent circuit, the shunt parameters are optimally searched based on the criterion of maximizing the dissipated energy at the shunt circuit. Transmitted sound reduction performance is compared according to different piezoelectric materials with peizo-damping. Two piezoelectric materials are selected: PZT-5 and QuickPack IDE actuator. When resonant shunt circuit is considered, the use of PZT-5 exhibited the good sound reduction performance.

  • PDF

Novel Zero Voltage Transition PWM Converter for Switched Reluctance Motor Drives (SRM 구동을 위한 새로운 ZVT-PWM 컨버어터)

  • Kim, Won-Ho;Kim, Jong-Su;Jo, Jeong-Gu;Im, Geun-Hui;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.455-460
    • /
    • 1999
  • A novel zero-voltage-transition (ZVT) PWM converter for switched reluctance motor (SRM) drives is proposed. A simple auxiliary circuit which consists of one active switch, one resonant inductor, and three diodes provides ZVS condition to all main switches and diodes allowing high frequency operation of the converter with high efficiency. The auxiliary circuit is placed in parallel with the main power flow path and thus it handles only a small fraction of the main power. So, the power rating of the auxiliary circuit can be very small (about 30% of main power). So, the auxiliary circuit can be realized with small power rating and low cost. Operation, features and characteristics of the proposed converter are illustrated and verified on a 1.5 kW, 50 kHz IGBT based (a MOSFET for the auxiliary with) experimental circuit.

  • PDF

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Analysis of the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass by the Equivalent Circuit Approach (등가회로를 이용한 후면추 고정형 Tonpilz 트랜스듀서의 공진 특성 해석)

  • Kim, Jin-Wook;Kim, Won-Ho;Joh, Chee-Young;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.344-352
    • /
    • 2011
  • In this paper, the resonant characteristic of a Tonpilz transducer with a fixed tail mass has been studied by means of an equivalent circuit approach. An equivalent circuit has been designed to describe the characteristic of a Tonpilz transducer that has an additional resonance because of its fixed tail mass. The transmitting voltage response of the transducer calculated by the designed circuit has been compared with that by the FEA (finite element analysis) to confirm the validity of the circuit. This equivalent circuit approach produces identical results with the FEA, in which the variation of resonant frequencies and TVR has been clearly figured out in relation to the stiffness of the mounting fixture and the mass of the tail mass. The suggested equivalent circuit can be utilized to figure out the characteristics of the Tonpilz transducer more efficiently than FEA that requires much calculation time and revision of the models in accordance with the variation of design variables.

Bidirectional LLC-LC Resonant Converter With Notch Filter (노치 필터 적용 양방향 LLC-LC 공진컨버터)

  • Jang, Ki-Chan;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.411-420
    • /
    • 2021
  • In this paper, bidirectional LLC-LC resonant DC-DC converter with notch filters in the primary side of resonant circuits is proposed. Even if resonant capacitors are used on the primary and secondary sides, the proposed converter can operate with the high gain characteristics of the LLC resonant converter without mutual coupling of resonant capacitors, regardless of the direction of power flow. In addition, by applying notch filters, the proposed converter can operate with a wider gain control range and can cope with overload and short circuit. The analysis and operating characteristics of the proposed bidirectional LLC-LC resonant converter are investigated. A 3.3 kW prototyped bidirectional LLC-LC resonant converter connected to 750 VDC buses is designed and tested to verify the validity and applicability of this proposed converter.

A Noel Soft-Switching AC-DC Converter using $L^2SC$

  • Kim C. S.;Lee H. W.;Suh K. Y.;Kim H. D.;Kim K. T.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.271-275
    • /
    • 2001
  • In this paper, proposes a novel AC-DC converter of high power factor and high efficiency by partial resonant method. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and $L^2SC$ (Loss-Less Snubber Condenser). The switching control technique of the converter is simplified for switches to drive in constant duty cycle. Some simulative results and experimental results are included to confirm the validity of the analytical results.

  • PDF

A Study on PFC AC-DC Converter of High Efficiency added in Electric Isolation (절연형 고효율 PFC AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Sang-Roan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1349-1355
    • /
    • 2009
  • This paper is studied on a novel power factor correction (PFC) AC-DC converter of high efficiency by soft switching technique. The input current waveform in the proposed converter is got to be a sinusoidal form composed of many a discontinuous pulse in proportion to the magnitude of a ac input voltage under the constant switching frequency. Therefore, the input power factor is nearly unity and the control method is simple. The proposed converter adding an electric isolation operates with a discontinuous current mode (DCM) of the reactor in order to obtain some merits of simpler control, such as fixed switching frequency, without synchronization control circuit used in continuous current mode (CCM). To achieve the soft switching (ZCS or ZVS) of control devices, the converter is constructed with a new loss-less snubber for a partial resonant circuit. It is that the switching losses are very low and the efficiency of the converter is high, Particularly, the stored energy in a loss-less snubber capacitor recovers into input side and increases input current from a resonant operation. The result is that the input power factor of the proposed converter is higher than that of a conventional PFC converter. This paper deals mainly with the circuit operations, theoretical, simulated and experimental results of the proposed PFC AC-DC converter in comparison with a conventional PFC AC-DC converter.

A Study on the Polarity Changing Method without Dead Time of a Cycloconverter with an LC Resonant Circuit (LG 공진회로를 이용한 사이크로컨버터의 휴지기간 없는 극성절환 방법에 관한 연구)

  • Choi, Jung-Soo;Cho, Kyu-Min;Kim, Young-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.111-117
    • /
    • 1998
  • This paper presents a polarity changing method without dead time of a cycloconverter with an LC resonant circuit. According to the proposed method, dead time to prevent short circuit for the polarity changing is not required. Therefore the delay of control and the harmonic components of output currents can be decreased. And the proposed method can be expanded for the other natural commutated cycloconverters of noncirculating current type. In this paper, the switching method of the proposed polarity changing without dead time is studied, and in order to confirm the validity of the proposed method the experiment is carried out with a cycloconverter with an LC resonant circuit.

  • PDF