• Title/Summary/Keyword: resonance scattering

Search Result 181, Processing Time 0.023 seconds

Wave Propagation Characteristics of Acoustic Metamaterials with Helmholtz Resonators (헬름홀츠 공명기들로 구성된 음향 메타물질의 파동전파 특성)

  • Kwon, Byung-Jin;Jo, Choonghee;Park, Kwang-Chun;Oh, Il-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.167-175
    • /
    • 2013
  • The wave propagation characteristics of an acoustic metamaterial composed of periodically repeated one-dimensional Helmholtz resonator array was investigated considering the effects of dimensional changes of the resonator geometry on the transmission coefficient and band gap. The effective impedance and transmission coefficient of the acoustic metamaterials are obtained based on the acoustic transmission line method. The designed acoustic metamaterials exhibit band gaps and negative bulk modulus that are non-existent properties in the nature. The band gap of the acoustic metamaterial is strongly dependent on the geometry parameters of Helmholtz resonators and lattice spacing. Also, a new type of metamaterial that is periodically constructed with two different resonators was designed to open the local resonance band gap without change of Bragg scattering.

Nanoplasmonics: Enabling Platform for Integrated Photonics and Sensing

  • Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.75-75
    • /
    • 2015
  • Strong interactions between electromagnetic radiation and electrons at metallic interfaces or in metallic nanostructures lead to resonant oscillations called surface plasmon resonance with fascinating properties: light confinement in subwavelength dimensions and enhancement of optical near fields, just to name a few [1,2]. By utilizing the properties enabled by geometry dependent localization of surface plasmons, metal photonics or plasmonics offers a promise of enabling novel photonic components and systems for integrated photonics or sensing applications [3-5]. The versatility of the nanoplasmonic platform is described in this talk on three folds: our findings on an enhanced ultracompact photodetector based on nanoridge plasmonics for photonic integrated circuit applications [3], a colorimetric sensing of miRNA based on a nanoplasmonic core-satellite assembly for label-free and on-chip sensing applications [4], and a controlled fabrication of plasmonic nanostructures on a flexible substrate based on a transfer printing process for ultra-sensitive and noise free flexible bio-sensing applications [5]. For integrated photonics, nanoplasmonics offers interesting opportunities providing the material and dimensional compatibility with ultra-small silicon electronics and the integrative functionality using hybrid photonic and electronic nanostructures. For sensing applications, remarkable changes in scattering colors stemming from a plasmonic coupling effect of gold nanoplasmonic particles have been utilized to demonstrate a detection of microRNAs at the femtomolar level with selectivity. As top-down or bottom-up fabrication of such nanoscale structures is limited to more conventional substrates, we have approached the controlled fabrication of highly ordered nanostructures using a transfer printing of pre-functionalized nanodisks on flexible substrates for more enabling applications of nanoplasmonics.

  • PDF

Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae;Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.301-306
    • /
    • 2009
  • This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.

Synthesis and Characterization of MPEG-b-PDPA Amphiphilic Block Copolymer via Atom Transfer Radical Polymerization and Its pH-Dependent Micellar Behavior

  • Dayananda, Kasala;Kim, Min-Sang;Kim, Bong-Sup;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.385-391
    • /
    • 2007
  • Block copolymer micelles are generally formed via the self-assembly of amphiphilic block copolymers in an aqueous medium. The hydrophilic and hydrophobic blocks form shell and core micelles, respectively. The block copolymers of methoxy poly(ethylene glycol) (MPEG)-b-poly(2-diisopropylamino)ethyl methacrylate (PDPA) were synthesized via atom transfer radical polymerization, with the macro initiator synthesized by the coupling of 2-bromoisobutyryl bromide with MPEG in the presence of a triethyl amine base catalyst. The atom transfer radical polymerization of 2-diisopropylamino)ethyl methacrylate was performed in conjunction with an N,N,N',N",N"-pentamethyl-diethylenetriamine/copper bromide catalyst system, in DMF, at $70^{\circ}C$. The pH induced micellization/demicellization was studied using fluorescence, with a pyrene probe. Furthermore, the pH dependent micellization was confirmed using the microviscosity method, with a dipyme fluorescence probe. The pH dependant micelle size distribution was studied using dynamic light scattering. The characterization of the synthesized polymers was established using gel permeation chromatography and from the $^1H-nuclear$ magnetic resonance spectroscopy.

Improvement and application of DeCART/MUSAD for uncertainty analysis of HTGR neutronic parameters

  • Han, Tae Young;Lee, Hyun Chul;Cho, Jin Young;Jo, Chang Keun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.461-468
    • /
    • 2020
  • The improvements of the DeCART/MUSAD code system for uncertainty analysis of HTGR neutronic parameters are presented in this paper. The function for quantifying an uncertainty of critical-spectrumweighted few group cross section was implemented using the generalized adjoint B1 equation solver. Though the changes between the infinite and critical spectra cause a considerable difference in the contribution by the graphite scattering cross section, it does not significantly affect the total uncertainty. To reduce the number of iterations of the generalized adjoint transport equation solver, the generalized adjoint B1 solution was used as the initial value for it and the number of iterations decreased to 50%. To reflect the implicit uncertainty, the correction factor was derived with the resonance integral. Moreover, an additional correction factor for the double heterogeneity was derived with the effective cross section of the DH region and it reduces the difference from the complete uncertainty. The code system was examined with the MHTGR-350 Ex.II-2 3D core benchmark. The keff uncertainty for Ex.II-2a with only the fresh fuel block was similar to that of the block and the uncertainty for Ex.II-2b with the fresh fuel and the burnt fuel blocks was smaller than that of the fresh fuel block.

Non-Resonant Waveguide Technique for Measurement of Microwave Complex Permittivity of Ferroelectrics and Related Materials

  • Jeong, Moongi;Kim, Beomjin;Poplavko, Yuriy;Kazmirenko Victor;Prokopenko Yuriy;Baik, Sunggi
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.449-454
    • /
    • 2005
  • A waveguide method is developed to study the materials with relatively large dielectric constants at microwave range. Basically, the method is similar to the previous waveguide methods represented by short-circuit line and transmission/reflection measurement methods. However, the complex permittivity is not determined by the shift in resonance frequencies, but by numerical analysis of measured scattering parameters. In order to enhance microwave penetration into the specimen with relatively large permittivity, a dielectric plate with lower permittivity is employed for impedance matching. The influences of air gap between the specimen and waveguide wall are evaluated, and the corresponding errors are estimated. The propagation of higher order modes is also considered. Experimental results for several reference ceramics are presented.

Simulation of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 변환기의 시뮬레이션)

  • Jarng Soon Suck;Lee Je Hyeong;Ahn Heung Gu;Choi Heun Ho
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.218-223
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with extern리 electrical excitation conditions as well as external acoustic pressure loading conditions. Different results are available such as steady-state frequency response for RX and TX, displacement modes, directivity patterns, back-scattering patterns, resonant frequencies, bandwidths, quality factors, transmitting voltage (TV) responses, input receiving sensitivity (RS) responses. White the present barrel-stave typed sonar transducer of the piezoelectric material is being simulated, the external surface of the transducer is modified in order to allow the same water pressure to be applied to the inner and the outer surfaces of the transducer. With this modification for deep-water application, the resonance frequency of the modified flextentional sonar transducer becomes much lower than that of the unmodified flextentional sonar transducer. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

Escape of Lyβfrom Hot and Optically Thick Media

  • Chang, Seok-Jun;Lee, Hee-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.33.2-33.2
    • /
    • 2017
  • Symbiotic stars and quasars show strong far UV resonance doublets including O VI 1032 and 1038, which are known to be major coolants of astrophysical plasma with high temperature T > $10^5K$. We investigate the transfer of $H{\alpha}$ and $Ly{\beta}$ in an emission nebula of temperature T ~ $10^5$, where n=2 population is significant. Line photons of $H{\alpha}$ and $Ly{\beta}$ are transferred in the medium through spatial and frequency diffusion altering their identity according to the branching ratios. We adopt a Monte Carlo technique to describe the transfer of $H{\alpha}$ and $Ly{\beta}$ in an emission nebula with a uniform density and a simple geometrical figure. We find that the temperature of the emission nebula is the major controlling parameter to produce a nonnegligible flux of $Ly{\beta}$. In particular, when T exceeds $10^5K$ the number flux ratio may reach ~ 25% with line center optical depth of a few. We discuss the formation of broad $H{\alpha}$ wings from Raman scattering of $Ly{\beta}$ emergent from a hot emission nebula.

  • PDF

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Mixing Effect by Tone-Excitation In Round Jet Diffusion Flame (원형분류확산화염에서의 음파가진에 의한 혼합효과)

  • Kim, Tae Kwon;Park, Jeong;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.795-801
    • /
    • 1999
  • An experimental investigation has been conducted with the objective of studying the mixing mechanism near the nozzle exit in a tone-excited jet diffusion flame. The fuel jet was pulsed by means of a loudspeaker-driven cavity. The excitation frequencies were chosen for the two cases of the non-resonant and resonant frequency identified as a fuel tube resonance due to acoustic excitation. The effect of tone-excitations on mixing pattern near the nozzle exit and flame was visualized using various techniques, including schlieren photograph and laser light scattering photograph from $TiO_2$ seed particles. In order to clarify the details of the flame feature observed by visualization methods, hotwire measurements have been made. Excitation at the resonant frequency makes strong mixing near the nozzle. In this case, the fuel jet flow in the vicinity of nozzle exit breaks up into disturbed fuel parcels. This phenomena affects greatly the combustion characteristics of the tone excited jet and presumably occurs by flow separation from the wall inside the fuel nozzle. As a result, in the resonant frequency the flame length reduces greatly.