• Title/Summary/Keyword: resonance measurements

Search Result 403, Processing Time 0.026 seconds

Effects of Various Intracranial Volume Measurements on Hippocampal Volumetry and Modulated Voxel-based Morphometry (두개강의 용적측정법이 해마의 용적측정술과 화소기반 형태계측술에 미치는 영향)

  • Tae, Woo-Suk;Kim, Sam-Soo;Lee, Kang-Uk;Nam, Eui-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.63-73
    • /
    • 2009
  • Purpose : To investigate the effects of various intracranial volume (ICV) measurement methods on the sensitivity of hippocampal volumetry and modulated voxel-based morphometry (mVBM) in female patients with major depressive disorder (MDD). Materials and Methods : T1 magnetic resonance imaging (MRI) data for 41 female subjects (21 MDD patients, 20 normal subjects) were analyzed. Hippocampal volumes were measured manually, and ICV was measured manually and automatically using the FreeSurfer package. Gray and white matter volumes were measured separately. Results : Manual ICV normalization provided the greatest sensitivity in hippocampal volumetry and mVBM, followed by FreeSurfer ICV, GWMV, and GMV. Manual and FreeSurfer ICVs were similar in normal subjects (p = 0.696), but distinct in MDD patients (p = 0.000002). Manual ICV-corrected total gray matter volume (p = 0.0015) and Manual ICV-corrected bilateral hippocampal volumes (right, p = 0.014; left, p = 0.004) were decreased significantly in MDD patients, but the differences of hippocampal volumes corrected by FreeSurfer ICV, GWMV, or GMV were not significant between two groups (p > 0.05). Only manual ICV-corrected mVBM analysis was significant after correction for multiple comparisons. Conclusion : The method of ICV measurement greatly affects the sensitivity of hippocampal volumetry and mVBM. Manual ICV normalization showed the ability to detect differences between women with and without MDD for both methods.

  • PDF

High Energy Photon Dosimetry by ESR Spectroscopy in Radiotherapy (ESR Spectroscopy에 의한 치료용 고에너지 광자선의 선량측정)

  • Chu, Sung-Sil
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • The finding of long lived free radicals produced by ionizing radiation in organic crystals and the quantification of this effect by electron spin resonance(ESR) spactroscopy has proven excellent dosimetric applicability. The tissue equivalent alanine dosimeter also appear appropriate for radiation therapy level dosimetry. The dose measurement was performed in a Rando phantom using high energy photons as produced by high energy medical linear accelerator and cobalt-60 teletherapy unit. The absorbed dose range of the ESR/alanine dosimetry system could be extended down to 0.1 Gy. The response of the alanine dosimeters was determined for photons at different therapeutic dose levels from less than 0.1 Gy to 100 Gy and the depth dose measurements were carried out for photon energies of 1.25MeV, 6 and 10 MV with alanine dosimeters in Rando phantom. Comparisons between ESR/alanine in a Rando phantom and ion chamber in a water phantom were made performing depth dose measurements to examine the agreement of both methods under field conditions.

  • PDF

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (1.Field Measurements and Data Analyses) (개구부가 좁은 직사각형 항만의 공진특성(1.현장관측과 자료 분석))

  • 정원무;박우선;서경덕;채장원;정신택
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.201-215
    • /
    • 1999
  • Field measurements were made for long- and short-period waves and current velocities at the harbor mouth using pressure-type wave gauges and a current meter, respectively, at the Gamcheon Harbor which has a rectangular shape with a narrow entrance. The measured pressure data were subjected to spectral analyses after removing tidal effects by applying trend removal and high-pass filtering. For the band averaging of the raw spectra, in order to obtain good resolution over the entire frequency, instead of a constant band width, variable band widths were used, which gradually increase as marching from the lowest frequency towards higher frequencies. The Helmholtz resonance mode at the Gamcheon Harbor shows the relative amplification ratio of 9.2 at the wave period of 31.7 minutes, which is quite large compared with those at the harbors located on the east coast of Korea. The second and the third resonance period was 10.3 and 5.4 minute, respectively. On the other hand, the analysis of every 24 hours data shows that during storms the spectral densities are very large compared to those during calm seas and also the second and third resonances are predominant.

  • PDF

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

Analysis of Heel Pad Thickness in Korean (한국인의 발꿈치 패드 두께의 분석)

  • Kim, Yong-Jin;Kim, Hyeong-Jik;Lee, Kwang-Bok
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.188-192
    • /
    • 2015
  • Purpose: The purpose of this study is to provide Korean data on heel pad thickness according to age, gender, underlying disease, occupation, and body mass index (BMI). Materials and Methods: A retrospective study was conducted on 670 patients who underwent foot lateral plain radiography and magnetic resonance imaging (MRI) between January 2010 and July 2014. Through measurements of heel pad thickness, the usefulness and accuracy of foot lateral plain radiography was evaluated, and the mean Korean heel pad thickness in the weight-bearing and non-weight-bearing conditions was also evaluated according to age, gender, underlying disease, occupation, and BMI. Results: The 670 subjects with a mean age of 44 years (range, 12 to 84 years) consisted of 420 males and 250 females. The difference in heel pad thickness between non-weight-bearing foot lateral plain radiography and MRI was 0.69 mm. The heel pad thickness did not show a significant difference with age (p=0.08) and the presence of diabetes (p=0.09). With the increase in the Tegner score, the thickness of the heel pad increased (p=0.035), and subjects with a higher BMI had a thicker heel pad (p=0.03). The compressibility of the heel pad thickness showed no correlation with gender, diabetes, and Tegner score. Compressibility also increased with the increase in age and body weight. Conclusion: The mean Korean heel pad thickness measured through non-weight-bearing foot lateral plain radiography was 18.79 mm. The heel pad thickness increased with increasing BMI; however, age and diabetes did not show significant correlation. The compressibility of heel pad increased with the increase in age.

A Novel Multiple Band Antenna Design Implementing Unbalanced Feed-Lines and Meandered Patch Options (비대칭 급전선로와 패치설계를 이용한 다중대역 안테나의 설계)

  • Jung, Jin-Woo;Roh, Hyoung-Hwan;Park, Jun-Seok;Cho, Hong-Goo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.427-431
    • /
    • 2007
  • Applications in present-day mobile communication systems particularly require miniaturized dimensions and low-profiles of antenna in order to meet the mobile units. Thus, size reductions and bandwidth enhancements are becoming crucial design considerations for practical applications of microstrip antennas. The motivation of further experiments have been stepped to follow those studies for achieving compact and broadband, even multiplied operation modes, which are greatly increased with much attentions recently. To obtain broadband, single-feed, circularly polarized characteristics of microstrip antennas, a design with feed-line ought to be a factor of two. Usually, diagonally balanced-line feeds with hybrid coupler are employed to attain circular polarizations. We firstly formulated DGS (Defected Ground Structures) based operation principles of the entire microstrip components and therefore were able to derive impedance variance of feed-lines. After verifying corresponding experimental results, we targeted the frequency bands of UHF RFID (Ultra High Frequency Radio Frequency IDentification) and approximately of 0.4-2.4GHz have exhibited remarkable two resonance amplitudes as a dual band antenna. Our secondary researches were aimed to design quad band microstrip antenna which represents four resonance characteristics within the identical frequency bands as well. Microstrip patch has been meandered to lengthen the electrical paths, and the other design criteria with respecting physical parameters including radiation patterns and impedance bandwidths measurements will be described for verification. Advisable applications of these antennas can be GSM850, GSM900, GPS (L1-1575 and L2-1227) and UMTS-2110 of cellular systems, which extremely desire multiband and minimum size.

  • PDF

Evaluation of SPECT Analysis in Patients with Transient Global Amnesia

  • Choe, Bo-Young;Kim, Euy-Neyng;Chung, Yong-An;Sohn, Hyung-Sun;Kim, Sung-Hoon;Chung, Soo-Kyo;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.45-53
    • /
    • 2002
  • Objectives: This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Methods: Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA who have ongoing symptoms and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. Results: In patients with TGA, significant decreased rCBF was found along the L superior temporal extending to L parietal region of the brain and L thalamus. There were areas of increased rCBF in the R temporal, R frontal region and R thalamus. Conclusion: We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The imbalanced change of rCBF between bilateral cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may have strong relationship to the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  • PDF

Theoretical and experimental analysis of the lateral vibration of shafting system using strain gauges in 50,000-DWT oil/chemical tankers (스트레인 게이지를 이용한 5만 DWT 석유화학제품 운반선의 횡진동 분석에 관한 연구)

  • Lee, Jae-Ung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.301-306
    • /
    • 2016
  • During the initial stage of propulsion shaft design, the shaft alignment process includes a thorough consideration of lateral vibration to verify the operational safety of the shaft. However, a theoretical method for analyzing forced lateral vibrations has not been clearly established. The methods currently used in classification societies and international standards can only ensure a sufficient margin to avoid the blade-passing frequency resonance speed outside the range of ${\pm}20%$ of the maximum continuous rating (MCR) for the engine. Typically, in shaft alignment analyses, longer center distances between the support bearings promote affirmative results, but the blade order resonance speed can approach the lower limit for lateral vibration. Therefore, this matter requires careful attention by engineers, and a verification of the theoretical analysis by experimental measurements is highly desirable. In this study, both theoretical and experimental analyses were conducted using strain gauges under two draught conditions of vessels used as 50,000-DWT oil/chemical tankers, introduced recently as eco-friendly ships. Based on the analyses, the influence of the lateral vibration on the shafting system and the system's reliability was reviewed.

The Dynamic Characteristics and Serviceability of Long Span Multi-purpose Hall (장스팬 다목적 홀의 동적특성과 사용성)

  • Lee, Sung-Min;Choi, Chui-Kyung;An, Young-Ki;Lee, Soo-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.105-113
    • /
    • 2003
  • Because structural systems are becoming lighter and more flexible and have lower natural frequencies and dampings than before, coordinated rhythmic activities such as dancing, audience participation in arenas or concert halls, and aerobics result in undesirable levels of vibration. For rhythmic activities, it is resonant or near resonant behavior that result in significant dynamic amplification and hence human discomfort. The most rational design strategy is to provide enough of a gap between the natural frequency of a floor system and the dominant frequencies excited by planned human activities to assure reasonably that resonance will not occur. For the case study the vibration measurements were performed at the floor of a long-span multi-purpose hall during the rock concert of popular singer.

Measurement of Prostate Phantom Volume Using Three-Dimensional Medical Imaging Modalities (3차원 의료영상진단기기를 이용한 가상 전립선 용적 측정)

  • Seoung, Youl-Hun;Joo, Yong-Hyun;Choe, Bo-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.285-291
    • /
    • 2010
  • Recently, advance on various modalities of diagnosing, prostate volume estimation became possible not only by the existing two-dimension medical images data but also by the three-dimensional medical images data. In this study, magnetic resonance image (MRI), computer tomography (CT) and ultrasound (US) were employed to evaluate prostate phantom volume measurements for estimation, comparison and analysis. For the prostate phantoms aimed at estimating the volume, total of 17 models were developed by using devils-tongue jelly and changing each of the 5ml of capacity from 20ml to 100ml. For the volume estimation through 2D US, the calculation of the diameter with C9-5Mhz transducer was conducted by ellipsoid formula. For the volume estimation through 3D US, the Qlab software (Philips Medical) was used to calculate the volume data estimated by 3D9-3Mhz transducer. Moreover, the images by 16 channels CT and 1.5 Tesla MRI were added by the method of continuous cross-section addition and each of imaginary prostate model's volume was yielded. In the statistical analysis for comparing the availability of volume estimation, the correlation coefficient (r) was more than 0.9 for all indicating that there were highly correlated, and there were not statistically significant difference between each of the correlation coefficient (p=0.001). Therefore, the estimation of prostate phantom volume using three-dimensional modalities of diagnosing was quite closed to the actual estimation.