• Title/Summary/Keyword: resonance frequencies

Search Result 644, Processing Time 0.024 seconds

A dynamic analysis of bolted joints under various conditions (체결방법에 따른 볼트결합 구조물의 동적해석)

  • 정영도;박세만;박명균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.774-777
    • /
    • 2002
  • There are various methods to join mechanical structures together. They typically include welding, mechanical joints by bolts and other processes depending on specific needs. Analyses of joints in the mechanical structures are essential in understanding the dynamic characteristics of the structures. In this research an impulse technique is applies to investigate the dynamic behavior of joints produced by bolts. The length overlap in the joints was varied as the number of the bolts in the joins was changed. Also, the torque applied to the bolts were adjusted. Resonance frequencies were determined for the joints to evaluate the relationship between the increase in the applied torque and the increase in the number of bolts used in the joints. The results have demonstrated that the resonance frequencies of the joints increase with the increasing torque.

  • PDF

A Two State Feedback Active Damping Strategy for the LCL Filter Resonance in Grid-Connected Converters

  • Gaafar, Mahmoud A.;Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1587-1597
    • /
    • 2016
  • A novel active damping strategy for the LCL filter resonance is proposed using the grid current and the capacitor voltage. The proposed technique is deduced in the continuous time domain and a discussion for its discrete implementation is presented. According to the proposed technique, instability of the open loop system, which results in non-minimum phase behavior, can be avoided over wide range of resonant frequencies. Moreover, straightforward co-design steps for both the fundamental current regulator and the active damping loops can be used. A numerical example along with experimental results are introduced to validate the proposed strategy performance over wide range of resonant frequencies.

Model Reduction Considering Both Resonances and Antiresonances (공진과 반공진 특성을 동시고려한 모델 축소)

  • 허진석;이시복;이창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.985-990
    • /
    • 2001
  • The Frequency Response Function(FRF)s of FE Model reduced by SEREP methods accurately estimate the full model at resonance frequencies, However these FRFs are not accurate at antiresonance frequencies, Additionally, the truncation errors may he significant in the reduction mode1. So this paper considers the possibility of SERFP method through a numerical method to preserve dynamic behavior at antiresonance and appliers the static or dynamic compensation methods for truncation errors to the reduction model. This compensated reduction model is redesigned for pole-zero cancellation methods the objective of reducing a resonance frequency.

  • PDF

Design of a Size-reduced RFID Dual-UHF-Band Reader Antenna (RFID 이중 UHF 대역 인식 시스템용 안테나 소형화 설계)

  • Kahng, Sungtek;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1719-1724
    • /
    • 2013
  • In this paper, a size-reduction technique is presented for the RFID reader antenna working at two UHF bands. To tackle the problem of size increase in multi-band applications, two resonance paths are made to occur in one geometry with a single feed. While one resonance path is combined with the other, the entire geometry is determined to guarantee the resonance at the target frequencies through the dual-band input impedance matching. The antenna performance is predicted by the full-wave simulation, and the design method is verified by observing the good agreement between the simulated and measured results. At the two frequencies, the satisfactory return loss as well as the antenna efficiency and peak gain of the far-field pattern is obtained.

Evaluation Method of Micro Crack in a Ceramic Ferrule by Resonant Ultrasound Spectroscopy (공명초음파법을 이용한 세라믹제 페롤의 미소 크랙 평가법)

  • Yang, In-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.59-66
    • /
    • 2006
  • In this paper, we suggested an evaluation method of cracks in a ceramic product by resonant ultrasound spectroscopy. For experiment, we manufactured nondestructive measurement system by resonant ultrasound spectroscopy and measured resonance frequencies of acceptable and cracked ferrules. The evaluation criterion of ferrule is based on the comparison of resonance frequencies between acceptable and cracked-ferrule. The criterion value that defined by suggested formula is 2. By using the criterion, it is possible to evaluate both acceptable and cracked-ferrule.

Acoustic resonance by length of acoustic baffle at Finned Tube bank (핀-튜브군에서 배플 길이에 따른 음향공진)

  • 방경보;류제욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.98-103
    • /
    • 2003
  • This paper presents phenomena of vibration and noise due to acoustic resonance in tube bank of a HRSG. Acoustic resonance is may arise when the vortex shedding frequency coincides with the acoustic natural frequency. At this tube bank, dominant frequencies of vibration in this system were 43.5, 67.5㎐. The 3$\^$rd/ acoustic natural frequency calculated was 68.5㎐. When the difference of vortex shedding frequency and acoustic natural frequency is within ${\pm}$20%, acoustic resonance could occur. In this system, in order to prevent acoustic resonance, acoustic baffle was installed in the tube bank before operating. But acoustic resonance occurred. So, we evaluate the effect of acoustic mode due to baffle extension length. After investigating, we did revise acoustic baffle to eliminate acoustic resonance effectively.

  • PDF

Analysis on the cascade high power piezoelectric ultrasonic transducers

  • Lin, Shuyu;Xu, Jie
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.151-161
    • /
    • 2018
  • A new type of cascade sandwiched piezoelectric ultrasonic transducer is presented and studied. The cascade transducer is composed of two traditional longitudinally sandwiched piezoelectric transducers, which are connected together in series mechanically and in parallel electrically. Based on the analytical method, the electromechanical equivalent circuit of the cascade transducer is derived and the resonance/anti-resonance frequency equations are obtained. The impedance characteristics and the vibrational modes of the transducer are analyzed. By means of numerical method, the dependency of the resonance/anti-resonance frequency and the effective electromechanical coupling coefficient on the geometrical dimensions of the cascade transducer are studied and some interesting conclusions are obtained. Two prototypes of the cascade transducers are designed and made; the resonance/anti-resonance frequency is measured. It is shown that the analytical resonance/anti-resonance frequencies are in good agreement with the experimental results. It is expected that this kind of cascade transducer can be used in large power and high intensity ultrasonic applications, such as ultrasonic liquid processing, ultrasonic metal machining and ultrasonic welding and soldering.

A Study on the Fundamental Surge Frequencies in Multi-Stage Axial Flow Compressor Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.160-173
    • /
    • 2014
  • Surge phenomena in multi-stage axial flow compressors were studied with attention to the frequency behaviors. A new parameter "volume-modified reduced surge frequency" was introduced, which took into consideration the essential surge process, i.e., emptying and filling of the working gas in the delivery plenum. The behaviors of the relative surge frequencies at the stall stagnation boundaries, compared with the corresponding duct resonance frequencies, have demonstrated the existence of two types of surges; i.e., a near-resonant surge and a subharmonic surge. The former, which has fundamentally a near-resonance frequency, occurs predominantly at the stall stagnation boundary for the short -and-fat plenum delivery flow-path and the long-and-narrow delivery duct flow-path, and possibly in the intermediate conditions. The latter, which has a subharmonic frequency of the fundamental near-resonant one and occurs mainly in the intermediate zone, is considered to be caused by the reduced frequency restricted to a limited range. In relation with those dimensionless frequencies at the stall stagnation boundary, the surge frequency behaviors in more general situations away from the boundaries could be estimated, though very roughly.

Influence of Applied Electric Fields and Drive Frequencies on The Actuating Displacement of a Plate-type Piezoelectric Composite Actuator (평판형 압전 복합재료 작동기의 작동 변위에 미치는 인가전압 및 구동주파수의 영향)

  • Goo Nam-Seo;Woo Sung-Choong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.576-584
    • /
    • 2006
  • The actuating performance test of plate-type piezoelectric composite actuators having different lay-up sequences was experimentally carried out at simply supported and fixed-free boundary conditions. The actuating displacement of manufactured plate-type piezoelectric composite actuator (PCA) was measured using a non-contact laser displacement measurement system. Our results revealed that the actuating displacement with increasing applied electric field at a drive frequency of 1Hz increased non-linearly at the simply supported boundary condition whereas it almost linearly increased at the fixed-free boundary condition. On the other hand, the actuating displacement of piezoelectric composite actuator depended on the applied electric field in a drive frequency range from 1Hz to 10Hz, but its behavior was different in higher drive frequencies beyond 15Hz due to the occurrence of resonance. On the basis of the above experimental results, the bending characteristics of PCAs revealed different behavior depending on applied electric fields, drive frequencies as well as boundary conditions. Therefore, by investigating drive frequencies together with applied electric fields, actuating performance can be easily controlled and PCAs which were fabricated for this study will be sufficiently applied to pumping devices.

Improvement of Vibration Response of a Sensor Plate of Loose Parts Monitoring System in Nuclear Power Plants (원전 금속이물질 감시계통 센서 플레이트의 진동 특성 개선 연구)

  • Seo, Jung-Seok;Han, Soon-Woo;Lee, Jeong-Han;Kang, To;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.148-154
    • /
    • 2017
  • This paper discussed design for resonance avoidance of sensor plates of loose-parts monitoring systems (LPMS) in nuclear power plants (NPP). An LPMS monitors impact of loose parts in primary loop of NPP by using accelerometers, which is mounted on sensor plates. Resonance of the plates may cause false alarms at frequencies over 10 kHz, which can be misunderstood as impact signals of loose parts with small mass and cause unnecessary response of NPP operators. Modal analysis was carried out for the existing sensor plate and design parameters affecting natural frequencies were chosen. Frequency response functions of plates were analyzed by changing the parameters and the optimized plate design for avoiding resonance was determined. Experiments was carried out for the plate specimen with improved design and verified the proposed approach and design.