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Abstract 

 

A novel active damping strategy for the LCL filter resonance is proposed using the grid current and the capacitor voltage. The 
proposed technique is deduced in the continuous time domain and a discussion for its discrete implementation is presented. 
According to the proposed technique, instability of the open loop system, which results in non-minimum phase behavior, can be 
avoided over wide range of resonant frequencies. Moreover, straightforward co-design steps for both the fundamental current 
regulator and the active damping loops can be used. A numerical example along with experimental results are introduced to 
validate the proposed strategy performance over wide range of resonant frequencies. 
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I. INTRODUCTION 

Due to their higher attenuation for switching harmonics with 
a lower size and weight, LCL filters are widely used with grid-
connected converters to limit the harmonic contents of the 
injected grid current to comply with the grid codes; i.e. IEEE 
519-1992 [1]. However, the inherent resonance of the LCL 
filters represents a challenge for control system designers. 
Damping techniques have to be adopted to cope with this 
challenge. With discrete implementation, closed loop system 
stability can be maintained by the inherent damping 
characteristic of a single grid current control loop for resonant 
frequencies greater than one-sixth of the control frequency [2]. 
However, this strategy gives rise instability due to resonant 
frequency variations which are likely to occur particularly in 
weak grids where the grid inductance changes significantly [3]. 
Passive damping, by using a resistor, was used to cope with 
this issue [4]. However, it causes power losses. Thus active 
damping (AD) by modifying the control algorithm is preferred 
[5].  

Number of active damping techniques have been discussed 
in the literature [6]-[20]. A cascaded filter in the current 
control loop was used in [6] and [7]. However, this method is 
highly sensitive to resonant frequency variations. In addition, 
it causes a reduction in the system bandwidth. To overcome 
these issues, an inner feedback loop of one of the filter states 
has been employed to produce a damping effect [8]-[20]. A 
proportional feedback of the filter capacitor current was 
employed in [8]-[10]. To stabilize the closed loop system, it 
was proved that excitation of unstable open loop poles is 
mandatory for resonant frequencies greater than one-sixth of 
the control frequency [11]- [12]. This non-minimum phase 
behavior can decline the system performance especially when 
selective harmonic mitigation is of concern [11]. Modified 
feedback loops of the capacitor current have recently been 
proposed to avoid this behavior over wider range of resonant 
frequencies [11]-[15]. However, a high precision current 
sensor or a complicated observer loop is needed [16]. The 
capacitor voltage differentiation can be used to produce a 
damping effect. However, this technique results in noise 
amplification. To cope with this issue, a lead-lag network has 
been adopted to behave as a differentiator around the resonant 
frequency [17]- [18]. However, as shown in [17] , this method 
can be used effectively over limited range of resonant 
frequencies between 1/3.2 and 1/3.4 of the control frequency.  
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Fig. 1. Grid-connected Single phase inverter through an LCL filter. 
 

Grid-current-based active damping has recently been 
discussed [19]-[20]. Ideally, this needs an s2 term which 
cannot be implemented practically due to noise amplification. 
A high pass filter (HPF) is employed in [19] instead of the s2 
term. This technique is further discussed in [20] where it was 
shown that non-minimum phase behavior can be avoided for 
resonant frequencies up to a theoretical limit of 0.27 of the 
sampling frequency. However, the co-design steps of this 
HPF along with the fundamental current regulator are very 
complicated since many iterations are needed. Moreover, 
avoiding non-minimum behavior at high resonant frequencies 
requires increasing the cutoff frequency of the HPF to its 
maximum practical limit of 0.5 of the sampling frequency 
(Nyquist frequency). However, using such high value can 
deteriorate the HPF performance. This in turn, makes it 
unsuitable for practical implementation. Due to this practical 
limitation, and during the performance verification presented 
in [20], non-minimum phase behavior has been avoided up to 
a maximum resonant frequency of about 0.24 of the sampling 
frequency.  

In this paper, two feedback loops of the grid current and the 
capacitor voltage are proposed as a new active damping 
strategy. By using the proposed strategy, the non-minimum 
phase characteristics can be avoided over a wide range of 
resonant frequencies. Moreover, straightforward co-design 
procedures for both the fundamental current regulator and the 
active damping loops are proposed. For reduced number of 
sensors, virtual flux technique can be employed to estimate the 
capacitor voltage [18]. However, this is not adopted here. 

Following this introduction, section II presents  the 
continuous time domain derivation of the proposed active 
damping strategy. In section III, discrete implementation of 
the proposed strategy is presented along with the co-design 
steps of the fundamental current regulator and the active 
damping loops. In section IV, a numerical example along with 
experimental work are introduced to verify the proposed 
strategy performance at different resonant frequencies. Finally, 
section V presents some conclusions. 

 
 

 

II. PROPOSED ACTIVE DAMPING STRATEGY 

A. System Description 
Fig. 1 shows a single phase inverter connected to the grid 

through an LCL filter. The block diagram of the capacitor- 
current-based active damping system is shown in Fig. 2, where 
a proportional feedback (Hd) of the capacitor current is used to  
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Fig. 2. Block diagram of capacitor-current-based active damping. 
 
actively damp the filter resonance. The un-damped filter 
transfer function is denoted as Gig(s) and is expressed in (1), 
where ωres - expressed in (2) - is the LCL filter resonant 
frequency. A proportional resonant (PR) controller with a 
transfer function of Gc(s) – expressed in (3) – is employed for 
fundamental current regulation. 

                           (1) 

                                            (2) 

                                       (3) 

where ωo and ωi are the fundamental frequency and the 
bandwidth of the resonant part of the PR regulator, 
respectively.  

According to Fig. 2, the transfer function of the actively 
damped filter is expressed in (4). 

                                    (4) 

In Figs. 3(a) till 3(d), the capacitor-current-based active 
damping system is manipulated using signal flow graph 
manipulation. In Fig. 3(a), the capacitor current is replaced by 
the difference between the inverter output current and the grid 
injected current. With further manipulation, it is shown in Fig. 
3(c) that the capacitor current feedback is equivalent to using 
three feedback loops of the grid current (ig), the capacitor 
voltage (vc), and the modulated inverter voltage (vi). By further 
manipulation, the modulated voltage feedback is augmented in 
the main loop as a HPF, which is denoted as Gh(s) and 
expressed in (5), with a cut off frequency of ⁄ ; this 
system is shown in Fig. 3(d). The typical rang for  can be 
calculated by expressing the transfer function of the actively 
damped filter (Fad) in terms of  and writing it in a standard 
form as in (6). The damping ratio   is typically around 0.7 [8], 
[21]. Therefore, the typical range for  can be determined as 

2 . 

∙
⁄

                        (5)  

       

                 


                    (6) 

Note that the capacitor voltage feedback is an integrator, 
denoted as Gi(s) in Fig. 3(d), with a time constant of Li. 
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Fig. 3. Manipulation of the capacitor-current-based active damping technique. 

 
 

 

 

Fig. 4. Block diagram of the proposed active damping strategy. 
 

The presence of the HPF (Gh) in cascade with the main 
control loop can deteriorate the system disturbance rejection 
capability. This deterioration can be determined by comparing 
the system transfer function to the grid voltage (vg) for both 
the original system (shown in Fig. (2)) and the final 
manipulated system (shown in Fig. 3 (d)) considering the 
above-determined typical range of  [21]. 

B. Proposed Active Damping System 

The proposed system is derived in two steps as follow: 
1. The HPF, Gh(s), is eliminated from the main control loop 

and only inserted in the active damping feedback loop to 
keep its damping effect. By multiplying Gh(s) by Hd, the 
resulted transfer function, Gad (s) expressed in (7), is still a 
HPF with a gain of Li. This system is shown in Fig. 4. 
Then, the new actively damped filter (Fnew(s)) is expressed 
in (8). 

                       
⁄

                                (7) 

      

(8)⁄
  

 
 

The  term in the denominator of Fnew(s) results in a 
constant phase of -180° in the open loop bode plot. This in 
turn, can dramatically deteriorate the phase margin. As a 
result, more modifications are necessary. 

2. Both the gain of Gad(s) and the time constant of Gi(s) are 
expressed in terms of a new variable (Kd) as in (9) and 
(10), respectively.  

           	
⁄

                          (9) 

                                       (10) 
 

Substituting (9) and (10) into (8), Fnew(s) is re-written as: 
 

⁄

⁄
  

     (11)⁄
 

 

Using Routh’s criteria, Kd has to follow the constraint in 
(12) to guarantee the open loop system stability and hence 
minimum phase behavior.  

                                  0                            (12) 

To generalize the following analysis, Kd is expressed in 

terms of the above maximum limit  as in (13), where  

0 1 for a stable open loop system. 

                               	                                 (13) 

Substituting (13) into (11), the actively damped filter of the 
proposed system is finally expressed in (14). 

  
⁄

⁄ 	
     (14)  

 

III. DISCRETE IMPLEMENTATION 

A. System Discretization 

The discrete system representation of the proposed active 
damping strategy is shown in Fig. 5 where the DSP delay is 
represented by one sample delay. Using Tustin approximation 
with pre-warping at the fundamental frequency, the discrete 
PR regulator is determined in (15) where Ts is the sampling 
period.  

 

       (15) 

 In addition to Gig(s), expressed in (1), two other transfer 
functions should be defined for system discretization: 
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Fig. 5. Discrete representation of the proposed system. 
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Fig. 6. System equivalent discrete implementation. 
 

 Giv(s), expressed in (16), is the transfer function relating 
the modulated inverter voltage to the filter capacitor 
voltage. 

 Gvg(s), expressed in (17), is the transfer function relating 
the filter capacitor voltage to the grid current. 

 

Using Zero-Order-Hold (ZOH) discretization, Gig(z) and 
Giv(z) are expressed as (18) and (19), respectively. Gvg(z) is 
determined as Gig(z)/Giv(z).  

    

                                                      (16) 
 

                        				                      (17) 
 

      (18) 
 

 

                           (19) 
 

where    and    
 

For the active damping loops, Gi(z) and Gad(z) are 
determined using Tustin approximation and expressed in (20) 
and (21), respectively. 

                                                  (20) 
 

                                                 (21) 
 

where 
	

  and    
 

Finally, the discrete actively damped filter and the loop 
transfer function are expressed in (22) and (23), respectively. 

     
⁄

       (22) 

                                           (23) 
 

B. Control Parameters Design 

For tuning purpose, the equivalent s-domain representation, 
shown in Fig. 6, is used. The DSP delay is modelled by an 

exponential transfer function of .  [9]. 
According to this representation, both the actively damped 
filter transfer function (Fnew-d) and the loop transfer function 
(Tloop-d) are expressed in (24) and (25), respectively.  

⁄

⁄ 	
 (24)   

           

                                       (25) 

It was shown in [12] that the resonant frequency changes 
with discrete implementation. The new resonant frequency 
will be denoted as . At this resonant frequency the 
gain of Fnew-d can be approximately expressed in (26).  

     | | ≅
⁄

	
    (26) 

According to (26), higher values of ωh should be used to 
acquire better damping effect. Theoretically, for discrete 
implementation, ωh can be extended up to 0.5ωs (Nyquist 
sampling theory, where  is the control frequency in rad/sec). 
However, such high value can deteriorate the discretization 
process. A value of ωh =0.4ωs is adopted here. 

Since the resonant gain of the PR regulator is mainly 
effective at the fundamental frequency, the PR controller can 
be approximated as (27) 

        
						
							

                   (27) 

At the crossover frequency ( ), which should be 
sufficiently higher than  and below both and the 
adopted  (0.4 ), the loop gain can be approximated as 
(28). 

.

.   

. 1  (28) 

 

Using Trigonometry, this gain is reduced to (29). 

  

                                      1                (29) 

where 
          1 2 cos 1.5  

(30)
              sin

.
 

Hence, for certain value of , Kp should be calculated 
as in (31) to obtain certain crossover frequency. 

                                                  (31) 

Substituting (31) into (23), the loop transfer function is 
expressed in (32) 

                          (32) 
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Fig. 7. (a) pole-map of Fnew(z) for ωres1=0.143ωs with sweeping βd (b) corresponding bode plot for Tloop at βd =0.55. 
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Fig. 8. (a) pole-map of Fnew(z) for ωre2 =0.179ωs with sweeping βd, (b) corresponding bode plot for Tloop at βd =0.45. 
 

  At the fundamental frequency, the loop gain can be 
approximated as in (33).     

                        (33) 

where 1 2 cos 1.5  

This is expressed in dB in (34) from which Kr can be 

determined from (35) for certain fundamental loop gain (Tfo). 

           20 log                          (34) 

                ∙ 10                            (35) 

Using the above-derived expressions, the following steps 
are proposed to co-design the control system parameters.  
1. Plot the pole map of Fnew(z), expressed in (22), by sweeping 

. Select βd so that it corresponds to the farthest resonant 
poles inside the unit circle to achieve the best damping. 

2. For a certain value of the fundamental loop gain (Tfo) along 
with the selected value for βd, use (35) to determine Kr. 

3. For a certain value of the crossover frequency ( ) along 
with the selected value of βd, use (31) to determine Kp. 

4. Plot a bode diagram for the loop transfer function expressed 
in (23). Check the resonant peak. If the resonant peak is 
more than 0 dB, then decrease the pre-specified crossover 
frequency ( ) and repeat steps 3 and 4.  

IV. VERIFICATION 

A. Numerical Example  

Table I lists the parameter values of the grid-connected 
inverter shown in Fig. 1. Four capacitance values, 
corresponding to resonant frequencies of 0.143ωs, 0.179ωs, 
0.209ωs and 0.241ωs are used to verify the performance of the 
proposed system over a wide range of resonant frequencies 
with respect to the control frequency. These resonant 
frequencies are denoted as ωres1, ωres2, ωres3 and ωres4, 
respectively. The HPF cut off frequency (ωh) value is taken as  
0.4ωs to mitigate the resonant peak as much as possible. In 
addition, a value of 60 dB is adopted for the fundamental loop 
gain (Tfo). Finally, an initial value for the crossover frequency 
of 0.3 of each corresponding resonant frequency is adopted. 
Using the tuning steps presented in the last section, a pole-
map of Fnew(z) is plotted with variation of βd. These pole maps 
are plotted in Figs. 7(a), 8(a), 9(a) and 10(a) for the resonant 
frequencies ωres1, ωres2, ωres3 and ωres4, respectively. To 
achieve the best damping effect, the values of βd 
corresponding to the farthest resonant poles inside the unit 
circle are selected. These values are determined as 0.55, 0.45, 
0.3 and 0.15 for ωres1, ωres2, ωres3 and ωres4, respectively. Using 
the selected values of βd along with the pre-specified values of 
ωc and Tfo, the corresponding values of Kp and Kr are 
determined from (31) and (35), respectively. 
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Fig. 9. (a) pole-map of Fnew(z) for ωre3 =0.209ωs with sweeping βd, (b) corresponding bode plot for Tloop at βd =0.3 and different 
crossover frequencies. 
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Fig. 10. (a) pole-map of Fnew(z) for ωre4=0.241ωs with sweeping βd, (b) corresponding bode plot for Tloop at βd =0.15 and different 
crossover frequencies. 
 

TABLE I  

SYSTEM PARAMETERS 

Symbol Quantity Value 
P Rated power 400 W 

Vg Grid voltage 100 V 

Fo Grid Frequency 50 Hz 

Vdc DC Voltage 200 V 

Li Inverter side inductance 1.85 mH 

Lg Grid side inductance 1.3 mH 

C Capacitance 16.3 µF, 10.4 µF, 7.6 µF, 5.7 µF

Fsw Switching Frequency 10 KHz 

Fs Sampling Frequency 10 KHz 

 
For ωres1 and ωres2, Figs. 7(b) and 8(b) show bode plots of 

the loop transfer function, expressed in (23), respectively. It is 
shown that the resonance peak is less than 0 dB. For ωres3 and 
ωres4, it is found that the frequency response exhibits a 
resonant peak of more than of 0 dB. To overcome this issue, a 
reduction in the crossover frequency has to be adopted. For 
ωres3, it is found that a reduction of the crossover frequency of 
0.12ωres3 can reduce the resonant peak to less than 0 dB 
However, for ωres4, a large crossover frequency reduction is 
required to obtain a resonant peak of less than 0 dB. Such a 
reduction can deteriorate the system dynamic performance.  

Moreover, the phase lag introduced by the PR controller at 
low frequencies dramatically reduces the phase margin. 
Therefore, only a reduction of the crossover frequency to 
0.1ωres4 is adopted. Figs. 9(b) and 10(b) show the frequency 
responses for ωres3 and ωres4, respectively. 

Table II summaries the designed control parameters and the 
achieved performance of the phase margin (PM),  and Tfo. 
These results indicate the well damped performance of the 
proposed method over a wide range of resonant frequencies 
while meeting the pre-specified values of  and Tfo. 

 

B. Robustness against Grid Inductance Variations 

In real operation, the grid side inductance (Lg) may vary 
significantly. To investigate system robustness against such 
variations, the pole maps of the closed loop system Tclosed, 
expressed in (36), are plotted in Fig. 11 while sweeping Lg 
between 100-300% of its original value. 

                          (36) 

For the considered resonant frequencies, it is shown that the 
closed loop poles move inside the unit circle with an 
increasing Lg. These plots reflect the system robustness 
against grid inductance variations. 
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Fig. 11. Closed loop pole maps with grid inductance (Lg) variation for (a) ωres1=0.143ωs, (b) ωres2=0.179ωs, (c) ωres3=0.201ωs, (d) 
ωres4=0.241ωs. 
 

TABLE II  
DESIGNED CONTROL PARAMETERS & FREQUENCY RESPONSE 

RESULTS 

C 
(µF) 

Assumed  
ωc	

rad/sec 	

Designed 
Parameters Achieved	frequency	response

βd Kr	 Kp 
ωc	

rad/sec 	
PM	

degree
Tfo
dB

16.3 0.3ωres1 0.55 446 4.57 0.32ωres1 19.9 60.1
10.4 0.3ωres2 0.45 545 6.83 0.31ωres2 25.2 60.1

7.6 
0.3ωres3 0.3 693 

9.54 0.32ωres3 31.2 60.1
0.12ωres3  3.53 0.14ωres3 31.5 60

5.7 
0.3ωres4 0.15 841 

12.73 0.32ωres4 35.2 60.1
0.1ωres4 4.08 0.12ωres4 35.1 60

 

C. Comparative Study 

To show the superiority of the proposed method compared 
to the existing capacitor voltage/current based AD methods, 
the limitations of these methods are clarified under the same 
parameters used in the aforementioned numerical example. 

 Capacitor-voltage-based AD method:  Fig. 12 shows a 
discrete representation of this method, where a lead-lag 
network of Gad-v (z) is used for AD. The s-domain 
counterpart of this network is expressed as Gad-v (s) in (37). 
Using Fig. 12, the discrete loop transfer function can be 
expressed as (38). It was demonstrated in [17] that this 
method can behave effectively over the limited range of 
resonant frequencies between 1/3.2 and 1/3.4 of the 
sampling frequency (ωs). To emphasize the difficulty of 
using this method outside specified limits, the AD loop 
design procedures presented in [17] are used for the 
resonant frequencies ωres1 and ωres2 (<ωs/3.2) as follows. 
The value of Kf is determined using (39) to achieve a 
maximum network angle (φmax) of 75 degree at a frequency 
of ωmax = ωres. Then, the minimum value of Kd is determined 
as 3⁄ .	Following this, the root locus of the 

closed loop system, expressed in (40), is plotted while 
sweeping Kd (starting  the from Kdmin) as shown in Figs. 13(a) 
and 13(b) for the resonant frequencies ωres1 and ωres2, 
respectively. 

                          (37) 
 

 

                 (38) 

girefi
 zGc

cv

Actively	Damped	LCL	Filter

‐+‐+ 1z )(zGiv )(zGvg

 zG vad

 
 

Fig. 12. Block representation of capacitor-voltage-based AD 
method. 

 

         
1 sin

1 sin
                             (39)  

                                (40) 

It is shown in these plots that the system cannot be stable 
for any values of Kd. This ensures the difficulty of using this 
method for resonant frequencies outside specific limits. On 
the other hand, the proposed method behaves effectively 
over a wide range of resonant frequencies as verified in the 
above numerical example. 

 Capacitor-Current-based AD Method: In addition to its 
need for a high cost current sensor or a complicated 
observer loop to measure or estimate the capacitor current, 
it was shown in [12] and [13] that non-minimum phase 
behavior cannot be avoided for resonant frequencies of 
more than one-sixth of the sampling frequency, which 
implies an ineffective active damping [11]. Moreover, it 
was demonstrated in [12] and [13] that closed loop systems 
can hardly be stable at resonant frequency equal to one-sixth 
of the sampling frequency. This value of the resonant 
frequency can likely be reached due to grid inductance 
variations, which in turn implies a weak robustness. To 
emphasize these limitations, the capacitor- current-based 
AD method is used for the resonant frequencies ωres2 and 
ωres3 (>ωs/6). As shown in Fig. 2, the discrete closed loop 
system of this method can be easily derived and denoted as 
Tclosed-c. To verify the system robustness, the pole map of 
Tclosed-c is plotted while sweeping Lg between 100-300% of 
its original value. These plots are shown in Figs. 14(a) and 
14(b) for ωres2 and ωres3, respectively (The control 
parameters are determined using the procedures presented in 
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Fig. 13. Closed loop pole map using capacitor-voltage-based AD method with sweeping Kd, a) for ωres1=0.143ωs (Kp=8.47), b) for 
ωres2=0.179ωs (Kp=10.6). 
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                                (a)                                        (b) 
Fig. 14. Closed loop pole map of capacitor-current-based AD method with sweeping Lg, a) for ωres2 (Kp=10.6, Hd=5) , b) for ωres3 
(Kp=4.96, Hd=1). 
 

[9] and listed in below the corresponding plots). It is shown 
that the closed loop poles are very close to the unit circle. 
This in turn, demonstrates the ineffective damping 
performance of this method for resonant frequencies of 
more than one-sixth of the sampling frequency. Moreover, 
as shown in the zoomed part, the system stability violates 
around a certain value of the grid inductance corresponding 
to a resonant frequency of one-sixth of the sampling 
frequency. On the other hand, it has been shown that 
avoiding such non-minimum behavior and high robustness 
against grid inductance variations can be achieved over a 
wide range of resonant frequencies using the proposed AD 
method. 

D. Experimental Work 

Using the system parameters listed in Table I, a single 
phase inverter prototype has been built and connected through 
an LCL filter to an AC power supply to emulate a grid. The 
control algorithm has been implemented using the PE-Expert3 
platform, which consists of a C6713-A DSP development 
board along with a high-speed PEV board for analog-to-
digital conversion and PWM signal generation. To verify the 

dynamic response, the reference current is stepped up from 2 
A (0.5Irated) to 4 A (Irated). Using the designed parameters 
listed in Table II, some tests are carried out with and without 
the proposed active damping method. 

For ωres1, which is lower than one-sixth of the sampling 
frequency, the system cannot be stabilized without active 
damping (AD). Thus, removing the active damping loop for 
this case causes a high oscillatory current as shown in Fig. 
15(a). On the other hand, Fig. 15(b) shows the waveforms 
when using active damping loops. 

For ωres2, ωres3 and ωres4, the system can be stabilized 
without active damping as shown in Figs. 16(a), 17(a) and 
18(a). However, it can recognize the dynamic oscillations 
which are caused by weak damping (there is some damping 
introduced by the small resistance of the coils). Figs. 16(b), 
17(b) and 18(b) show the waveforms when using the 
proposed active damping loops. It can recognize the 
mitigation effect of the dynamic oscillations when using the 
proposed active damping method. This mitigation effect can 
be further clarified in Figs. 19 and 20. These figures show the 
spectrum of the grid current for each resonant frequency with 
and without the proposed active damping method. 
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Fig. 15. Experimental waveforms of grid current (ig) and grid voltage (vg) for ωres1 =0.143ωs (a) without AD, (b) with AD. 
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(a) (b) 
Fig. 16. Experimental waveforms of grid current (ig) and grid voltage (vg) for ωres2 =0.179ωs (a) without AD, (b) with AD. 
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(a) (b) 
Fig. 17. Experimental waveforms of grid current (ig) and grid voltage (vg) for ωres3 =0.209ωs (a) without AD, (b) with AD. 
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(a) (b) 
Fig. 18. Experimental waveforms of grid current (ig) and grid voltage (vg) for ωres4 =0.241ωs (a) without AD, (b) with AD. 
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(a) (b) (c) 
Fig. 19. Spectrum of the grid current (ig) without active damping loops for (a) ωres2=0.179ωs (b) ωres3 =0.209ωs and (c) ωres4=0.241ωs. 

 
(a) (b) (c) 

Fig. 20. Spectrum of the grid current (ig) with active damping loops for (a) ωres2=0.179ωs (b) ωres3 =0.2ωs and (c) ωres4=0.241ωs. 
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Fig. 21. Experimental waveforms of grid voltage (vg) and grid 
current (ig) using capacitor-current-based AD at ωres2 =0.179ωs. 

 

For experimental verification of its ineffective damping for 
resonant frequencies of more than one-sixth of the sampling 
frequency, the capacitor current based AD method has been 
used for the resonant frequency ωres2 (=0.179ωs), and Fig. 21 
shows the corresponding experimental waveforms. It can be 
seen that the resonant current oscillations are still present in 
this case. On the other hand, the damping of the proposed AD 
method at the same resonant frequency has been clarified in 
Fig. 16(b). 

These results, along with the frequency response analysis 
introduced in the above numerical example, reflect 
satisfactory steady state and transient performances along 
with resonance damping over a wide range of resonant 
frequencies using the proposed active damping method and 
the control parameters tuning steps. 

V. CONCLUSION 

A novel active damping strategy using two feedback 
loops of the grid current and filter capacitor voltage is 
proposed in this paper. Compared to the previous active 
damping methods, the proposed one can offer the following 
merits. 

 Compared to the capacitor-current-based method, the cost 
can be reduced by omitting the high cost current sensor. 
Moreover, the non-minimum phase behavior can be 
avoided over a wide range of resonant frequencies. 

 Compared to the capacitor-voltage-based method, the 
proposed strategy can behave effectively over a wide 
range of the resonant frequencies without stability 
violations. 

 Compared to the grid current based method, a 
straightforward co-design method for the fundamental 
current regulator and the active damping loops are 
proposed.  
A numerical example has been introduced to verify the 

performance of the proposed method over a wide range of 
resonant frequencies. To show the superiority of the proposed 
method, the drawbacks of the capacitor voltage/current based 
methods have been clarified. This example along and 
experimental results reflect the satisfactory performance of 
the proposed method. 
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