• Title/Summary/Keyword: resolvent operator technique

Search Result 25, Processing Time 0.021 seconds

APPROXIMATION-SOLVABILITY OF A CLASS OF A-MONOTONE VARIATIONAL INCLUSION PROBLEMS

  • Verma, Ram U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.55-66
    • /
    • 2004
  • First the notion of the A-monotonicity is applied to the approximation - solvability of a class of nonlinear variational inclusion problems, and then the convergence analysis is given based on a projection-like method. Results generalize nonlinear variational inclusions involving H-monotone mappings in the Hilbert space setting.

  • PDF

A SYSTEM OF PARAMETRIC GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS IN $L_p$ SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.493-506
    • /
    • 2005
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a system of parametric generalized nonlinear mixed quasi-variational inclusions in Banach spaces. By using some new and innovative technique, existence theorem for the system of parametric generalized nonlinear mixed quasi-variational inclusions in $L_p(p\ge2$ spaces is established. Our results improve the known result of Agarwal et al.[1].

ON GENERALIZED NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • Li, Jin-Song;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, we introduce a new generalized nonlinear quasivariational inequality and establish its equivalence with a xed point problem by using the resolvent operator technique. Utilizing this equivalence, we suggest two iterative schemes, prove two existence theorems of solutions for the generalized nonlinear quasivariational inequality involving generalized cocoercive mapping and establish some convergence results of the sequences generated by the algorithms. Our results include several previously known results as special cases.

CONVERGENCE AND STABILITY OF THREE-STEP ITERATIVE SCHEME WITH ERRORS FOR COMPLETELY GENERALIZED STRONGLY NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • ZHANG FENGRONG;GAO HAIYAN;LIU ZEQING;KANG SHIN MIN
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.465-478
    • /
    • 2006
  • In this paper, we introduce a new class of completely generalized strongly nonlinear quasivariational inequalities and establish its equivalence with a class of fixed point problems by using the resolvent operator technique. Utilizing this equivalence, we develop a three-step iterative scheme with errors, obtain a few existence theorems of solutions for the completely generalized non-linear strongly quasivariational inequality involving relaxed monotone, relaxed Lipschitz, strongly monotone and generalized pseudocontractive mappings and prove some convergence and stability results of the sequence generated by the three-step iterative scheme with errors. Our results include several previously known results as special cases.

GENERALIZED MULTIVALUED QUASIVARIATIONAL INCLUSIONS FOR FUZZY MAPPINGS

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • The Pure and Applied Mathematics
    • /
    • v.14 no.1 s.35
    • /
    • pp.37-48
    • /
    • 2007
  • In this paper, we introduce and study a class of generalized multivalued quasivariational inclusions for fuzzy mappings, and establish its equivalence with a class of fuzzy fixed-point problems by using the resolvent operator technique. We suggest a new iterative algorithm for the generalized multivalued quasivariational inclusions. Further, we establish a few existence results of solutions for the generalized multivalued quasivariational inclusions involving $F_r$-relaxed Lipschitz and $F_r$-strongly monotone mappings, and discuss the convergence criteria for the algorithm.

  • PDF