• 제목/요약/키워드: resolution dimensions

검색결과 133건 처리시간 0.02초

THE RESOLUTION DIMENSIONS WITH RESPECT TO BALANCED PAIRS IN THE RECOLLEMENT OF ABELIAN CATEGORIES

  • Fu, Xuerong;Hu, Yonggang;Yao, Hailou
    • 대한수학회지
    • /
    • 제56권4호
    • /
    • pp.1031-1048
    • /
    • 2019
  • In this paper we study recollements of abelian categories and balanced pairs. The main results are: recollements induce new balanced pairs from the middle category; the resolution dimensions are bounded under certain conditions. As an application, the resolution dimensions with respect to cotilting objects of abelian categories involved in recollements are recovered.

High Resolution Analysis for Defective Pixels Detection using a Low Resolution Camera

  • Gibour, Veronique;Leroux, Thierry;Bloyet, Daniel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.856-859
    • /
    • 2002
  • A system for high-resolution analysis of defective elementary cell (R, G or B) on Flat Panel Display (FPD) is described. Based on multiple acquisitions of low-resolution shifted images of the display, our system doesn't require a high-resolution sensor neither tedious alignment of the display, and will remain up to date even facing an important increase of the display dimensions. Our process, highly automated and thus flexible and robust, is expected to perform a full analysis in less than 60s. It is mainly intended for production tests and display classification by manufacturers.

  • PDF

Content-Based Image Retrieval Using Combined Color and Texture Features Extracted by Multi-resolution Multi-direction Filtering

  • Bu, Hee-Hyung;Kim, Nam-Chul;Moon, Chae-Joo;Kim, Jong-Hwa
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.464-475
    • /
    • 2017
  • In this paper, we present a new texture image retrieval method which combines color and texture features extracted from images by a set of multi-resolution multi-direction (MRMD) filters. The MRMD filter set chosen is simple and can be separable to low and high frequency information, and provides efficient multi-resolution and multi-direction analysis. The color space used is HSV color space separable to hue, saturation, and value components, which are easily analyzed as showing characteristics similar to the human visual system. This experiment is conducted by comparing precision vs. recall of retrieval and feature vector dimensions. Images for experiments include Corel DB and VisTex DB; Corel_MR DB and VisTex_MR DB, which are transformed from the aforementioned two DBs to have multi-resolution images; and Corel_MD DB and VisTex_MD DB, transformed from the two DBs to have multi-direction images. According to the experimental results, the proposed method improves upon the existing methods in aspects of precision and recall of retrieval, and also reduces feature vector dimensions.

A Method for Improving Resolution and Critical Dimension Measurement of an Organic Layer Using Deep Learning Superresolution

  • Kim, Sangyun;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.153-164
    • /
    • 2018
  • In semiconductor manufacturing, critical dimensions indicate the features of patterns formed by the semiconductor process. The purpose of measuring critical dimensions is to confirm whether patterns are made as intended. The deposition process for an organic light emitting diode (OLED) forms a luminous organic layer on the thin-film transistor electrode. The position of this organic layer greatly affects the luminescent performance of an OLED. Thus, a system for measuring the position of the organic layer from outside of the vacuum chamber in real-time is desired for monitoring the deposition process. Typically, imaging from large stand-off distances results in low spatial resolution because of diffraction blur, and it is difficult to attain an adequate industrial-level measurement. The proposed method offers a new superresolution single-image using a conversion formula between two different optical systems obtained by a deep learning technique. This formula converts an image measured at long distance and with low-resolution optics into one image as if it were measured with high-resolution optics. The performance of this method is evaluated with various samples in terms of spatial resolution and measurement performance.

캐드로부터 변환된 비트맵 이미지를 사용한 잉크젯 프린팅 (Using CAD-Converted Bitmap Images for Inkjet Printing)

  • 김형석;권계시
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.833-840
    • /
    • 2015
  • Inkjet technology is one of the commonly used technologies in the printed-electronics field. The primary issue regarding the usage of inkjet technology as a printed-electronics tool is the printing resolution; therefore, to print complicated patterns of precise dimensions, we developed software that can convert a CAD file into a bitmap image. Moreover, as a bitmap image is not comprised of physical dimensions, its resolution needs to be defined in terms of pixel distance to print a rasterized bitmap image. In this study, we investigated the effects of pixel distance and dot size on printing resolution; based on the experiment results, we concluded that the printed dot size should be used to determine the optimal pixel distance. Lastly, we also propose inkjet printing procedures for bitmap images.

Evaluating the Comfort Experience of a Head-Mounted Display with the Delphi Methodology

  • Lee, Doyeon;Chang, Byeng-hee;Park, Jiseob
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.81-94
    • /
    • 2020
  • This study developed evaluation indicators for the comfort experience of virtual reality (VR) headsets by classifying, defining, and weighting cybersickness-causing factors using the Delphi research method and analytic hierarchical process (AHP) approach. Four surveys were conducted with 20 experts on VR motion sickness. The expert surveys involved the 1) classification and definition of cybersickness-causing dimensions, classification of sub-factors for each dimension, and selection of evaluation indicators, 2) self-reassessment of the results of each step, 3) validity revaluation, and 4) final weighting calculation. Based on the surveys, the evaluation indicators for the comfort experience of VR headsets were classified into eight sub-factors: field of view (FoV)-device FoV, latency-device latency, framerate-device framerate, V-sync-device V-sync, rig-camera angle view, rig-no-parallax point, resolution-device resolution, and resolution-pixels per inch (PPI). A total of six dimensions and eight sub-factors were identified; sub-factor-based evaluation indicators were also developed.

Content-Based Image Retrieval Using Multi-Resolution Multi-Direction Filtering-Based CLBP Texture Features and Color Autocorrelogram Features

  • Bu, Hee-Hyung;Kim, Nam-Chul;Yun, Byoung-Ju;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.991-1000
    • /
    • 2020
  • We propose a content-based image retrieval system that uses a combination of completed local binary pattern (CLBP) and color autocorrelogram. CLBP features are extracted on a multi-resolution multi-direction filtered domain of value component. Color autocorrelogram features are extracted in two dimensions of hue and saturation components. Experiment results revealed that the proposed method yields a lot of improvement when compared with the methods that use partial features employed in the proposed method. It is also superior to the conventional CLBP, the color autocorrelogram using R, G, and B components, and the multichannel decoded local binary pattern which is one of the latest methods.

C-Scan 초음파 영상 컬러화 및 용접 품질 자동 평가 시스템 (Colorization of C-Scan Ultrasonic Image and Automatic Evaluation Algorithm of Welding Quality)

  • 김태규;권성근
    • 한국멀티미디어학회논문지
    • /
    • 제21권11호
    • /
    • pp.1271-1278
    • /
    • 2018
  • The NDT using ultrasonic is largely divided into A-Scan and C-Scan methods. Since A-Scan method is subject to subjective judgement by trained personnel, C-Scan method has been introduced, which presents the weld area in two dimensions by placing the transducers two dimensionally used in the A-Scan method. Therefore, it is necessary to develop equipment that can provide weld quality without the help of a welding expert and the presentation of effective C-Scan images. Thus, in this paper, the algorithms that express a low resolution 2-dimensional gray image formed by C-Scan method as a high-resolution color C-Scan image and automatically determine the weld quality from the generated C-Scan color image. The high resolution color C-Scan images proposed in this paper allow the exact shape of the weld point to be expressed, and an objective algorithm to use this image to automatically determine weld quality.

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: I. THE MOLECULAR CLOUDS IN THE ANTIGALACTIC CENTER

  • LEE YOUNGUNG
    • 천문학회지
    • /
    • 제37권4호
    • /
    • pp.137-141
    • /
    • 2004
  • We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the $^{12}CO$ (J = 1- 0) and $^{13}CO$ (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution $^{12}CO$ (J = 1 - 0) database, and D = 1.4 for higher resolution $^{12}CO$ (J = 1 - 0) and $^{13}CO$ (J = 1 - 0) database, where $P {\propto} A^{D/2}$. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.

50cm의 resolution을 가지는 LED 조명 기반의 실내 측위 시스템 (Indoor positioning system of 50 cm resolution based on LED)

  • 정수용;한수욱;박창수
    • 한국위성정보통신학회논문지
    • /
    • 제5권2호
    • /
    • pp.69-74
    • /
    • 2010
  • 본 논문에서는 LED 조명 기반의 실내 측위 시스템을 제안하였다. LED가 빛을 방출하며 고속의 switching이 가능하다는 반도체 조명이라는 특징을 이용하여 각각의 LED 조명에 고유의 8 비트 ID를 부여 후, 이를 방출되는 조명 빛에 변조하여 보내주었다. 수신기는 16 개의 LED 조명으로부터 조합된 정보를 수신하게 되고, 수신된 정보와 각각의 ID 정보 간의 correlation coefficient를 이용하여 $4\;m\;{\times}\;4\;m\;{\times}\;2\;m$의 공간에서 100 cm 및 50 cm resolution을 가지는 위치인식 시스템을 시뮬레이션을 통해 구현하여 보았다. 제안된 측위 시스템은 간단한 알고리즘을 사용하였고, LED 조명 인프라를 사용하여 구축함으로써 설치비용 절감이 가능할 것이라 기대된다.