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THE RESOLUTION DIMENSIONS WITH RESPECT TO

BALANCED PAIRS IN THE RECOLLEMENT OF

ABELIAN CATEGORIES

Xuerong Fu, Yonggang Hu, and Hailou Yao

Abstract. In this paper we study recollements of abelian categories and
balanced pairs. The main results are: recollements induce new balanced
pairs from the middle category; the resolution dimensions are bounded
under certain conditions. As an application, the resolution dimensions
with respect to cotilting objects of abelian categories involved in recolle-
ments are recovered.

1. Introduction

Thirty-five years ago, Beilinson, Bernstein and Deligne [6] first introduced
the notion of recollements in the context of triangulated categories. A recolle-
ment of abelian categories appeared in Macpherson and Vilonen’ work [15]. A
recollement situation between abelian categories A , B and C is a diagram

(1.1) A
i // B

q

ww

p

gg
e // C

r

gg

l

ww
,

satisfying the following conditions:
(R1) (q, i, p) and (l, e, r) are adjoint triples;
(R2) the functors i, l and r are fully faithful;
(R3) Im i = Ker e,

which plays an important role in algebraic geometry, representation theory,
polynomial functor theory, ring theory and so on. Psaroudakis and Vitória
[17] observed that a recollement whose terms are module categories is equiva-
lent to one induced by an idempotent element. Han and Qin [18] clarified the
relations between the n-recollements of derived categories of algebras and the
Cartan determinants, homological smoothness and Gorensteinness of algebras,
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respectively. In 2014, Psaroudakis [16] investigated global, finitistic, and rep-
resentation dimensions of recollements of abelian categories. The reader may
refer to [2, 6, 8, 16, 17, 19] and references therein.

Inspired by [10, Definition 8.2.13], Chen [7] introduced the notion of balanced
pairs of additive subcategories in an abelian category. He also studied various
properties of balanced pairs in subcategories. We know that the balanced pairs
arise naturally from cotorsion triples. The relative homological dimension the-
ory with respect to contravariantly finite subcategories originated in the works
of Dugas [9] in order to generalize some standard theory of projective modules.
They proved that the relative homological dimensions have nice properties of
the classical homological dimensions. Psaroudakis explicitly investigated how
various homological invariants and dimensions of the categories involved in a
recollement are related. In particular, he showed that the homological dimen-
sions of B can be bounded by the homological dimensions of A and C .

Motivated by the research mentioned above, we aim to study how the res-
olution dimension with respect to balanced pairs behaves in a recollement
(A ,B,C ) between abelian categories. The main results of this paper are the
following two theorems proved in Section 2:

Theorem A. Let (A , B, C ) be a recollement of abelian categories. If (X , Y)
is a balanced pair in B, then

(i) (e(X ), e(Y)) is a balanced pair in C ;
(ii) (q(X ), p(Y)) is a balanced pair in A .

Theorem B. Let (A ,B,C ) be a recollement of abelian categories with an

admissible balanced pair (X ,Y) in B. If X -res.dimB ≤ k and re(X ) ⊆ X ,

iq(X ) ⊆ X , then

(i) e(X )-res.dim(C ) ≤ k;
(ii) if the functor q : B → A is exact, then q(X )-res.dim(A ) ≤ k;
(iii) X -res.dim(B) ≥ max{e(X )-res.dim(C ), q(X )-res.dim(A )}.

Throughout, we denote by N, K and Id the set of nonnegative integers, a
fixed field and the identity functor, respectively.

2. Main results

Let B be an abelian category. Let X ,Y ⊆ B be a full additive subcategory
which are closed under taking direct summands. For an object B in B, the
morphism f : X → B with X ∈ X is called a right X -approximation of B

if HomB(X , X) // HomB(X , B) // 0 is exact in B. The subcategory X

of B is said to be contravariantly finite, if each object B in B has a right
X -approximation. Dually, the subcategory Y of B is called covariantly finite
provided each object B in B admits a left Y-approximation. That is, for a
morphism g : B → Y with Y ∈ Y, the sequence

HomB(Y,Y) // HomB(B,Y) // 0
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is exact in B.
Recall that for a contravariantly finite subcategory X ⊆ B and an object

M ∈ B, an X -resolution of M is a complex

· · · // Tn
tn // Tn−1

tn−1 // · · · // T1
t1 // T0

ε // M // 0

with each Ti ∈ X such that it is acyclic by applying the functor Hom(T,−) for
each T ∈ X ; this is equivalent to that each induced morphism Tn → Ker tn−1

is a right X -approximation. We also recall that the X -resolution dimension
X -res.dim(M) of an object M is defined to be the minimal integer n ≥ 0 such
that there is an X -resolution

0 // Tn
// Tn−1

// · · · // T1
// T0

// M // 0.

That is,

X -res.dim(M) = min{n ∈ N |Ωn+1
X M = Ker tn = 0}.

If there is no such an integer, we set X -res.dim(M) = ∞. Define the global
X -resolution dimension X -res.dim(B) to be the supreme of the X -resolution
dimension of all the objects in B. That is,

X -res.dim(B) = sup{X -res.dim(M) | ∀M ∈ B}.

Dually, let Y ⊆ B be another full additive subcategory which is closed under
taking direct summands. One also can define Y-coresolution and Y-coresolution
dimension Y-cores.dimN of an object N . Furthermore, one has the notion of
global Y-coresolution dimension Y-cores.dim(B). That is,

Y-cores.dim(B) = sup{Y-cores.dim(N) | ∀N ∈ B}.

For more details, see [3, 5, 7, 9, 14] and references therein.
A pair (X ,Y) of additive subcategories in B is called a balanced pair if the

following conditions are satisfied:

(BP1) the subcategory X is contravariantly finite and Y is covariantly finite;
(BP2) for each object M , there is an X -resolution X• → M such that it is

acyclic by applying the functors HomB(−, Y ) for all Y ∈ Y;
(BP3) for each object N , there is a Y-coresolution N → Y • such that it is

acyclic by applying the functors HomB(X,−) for all X ∈ X .

Example 1. The pair (Proj-A, Inj-A) in Mod-A over an Artin algebra A is
a balanced pair, where Proj-A (resp. Inj-A) is the full subcategory of Mod-A
consisting of all projectives (resp. injectives) in Mod-A. Dually, the pair (Proj-
C, Inj-C) in Comod-C over a right semiperfect coalgebra C is a balanced pair,
where Proj-C (resp. Inj-C) is the full subcategory of Comod-C consisting of
all projectives (resp. injectives) in Comod-C. If R is a Gorenstein ring, then
the pair (GP(R),GI(R)) in Mod-R is also a balanced pair, where GP(R) (resp.
GI(R)) is the full subcategory of Mod-R consisting of all Gorenstein projectives
(resp. Gorenstein injectives) in Mod-R.
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Chen [7] also defined that the balanced pair (X ,Y) is admissible if X ⊆ B is
admissible, that is, each right X -approximation is epic. In this case the additive
subcategory Y ⊆ B is coadmissible, that is, each left Y-approximation is monic.

Let (A ,B,C ) be a recollement of abelian categories. Some properties of
a recollement are listed as follows. The reader may refer to [8], [13], [17],
[16, Remarks 2.2-2.5] and references therein.

(i) The functors e : B → C and i : A → B are exact. Moreover, qi ≃ IdA ,
IdA ≃ pi, er ≃ IdC and IdC ≃ el.

(ii) If the pair (l, e) is an adjoint functor pair and the functor e is exact, then
the left adjoint functor l preserves projective objects.

(iii) If the pair (e, r) is an adjoint functor pair and the functor r is exact, then
the left adjoint functor e preserves projective objects.

(iv) If the pair (l, e) is an adjoint functor pair and the functor l is exact, then
the right adjoint functor e preserves injective objects.

(v) If the pair (e, r) is an adjoint functor pair and the functor e is exact, then
the right adjoint functor r preserves injective objects.

(vi) For any adjoint functor pair, the left adjoint functor preserves the right
exactness and commutes with any direct sums; the right adjoint functor
preserves the left exactness and commutes with any direct products, such
as for the adjoint pair (l, e), we have that Add(l(M)) = l(Add(M)) and
Prod(e(N)) = e(Prod(N)).

Now we have the following key observations, which are very important for
the proof of our main result.

Lemma 2.1. Let (A ,B,C ) be a recollement of abelian categories.

(i) If X is a contravariantly finite subcategory of B, then e(X ) is a con-

travariantly finite subcategory of C .

(ii) If Y is a covariantly finite subcategory of B, then e(Y) is a covariantly

finite subcategory of C .

Proof. (i) For each object C in C , we have r(C) ∈ B and there exists an object
X0 ∈ X such that the morphism f : X0 → r(C) is a right X -approximation.
We apply the exact functor e to f , then the natural equivalence er ≃ IdC can
induce a morphism e(f) : e(X0) → C in C . Now we claim that e(f) is a right
e(X )-approximation. Indeed, it suffices to show that the sequence

HomC (e(X), e(X0)) // HomC (e(X), C) // 0

is exact in C , for each object e(X) ∈ e(X ), i.e., the morphism HomC (e(X), e(f))
is epic. Since (e, r) is an adjoint pair, there is a commutative diagram

HomC (e(X), e(X0))
HomC (e(X),e(f))
−−−−−−−−−−−→ HomC (e(X), C)

∼=





y

∼=





y

HomB(X, re(X0))
HomB(X,re(f))
−−−−−−−−−−→ HomB(X, r(C)).
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To prove HomC (e(X), e(f)) is epic, it suffices to show that there exists a mor-
phism α : X → re(X0) such that re(f)α = γ for any γ : X → r(C). Suppose
that ν is the unit of the adjoint pair (e, r), then the existence of α can be
inferred from the following commutative diagram

X

s

zz
γ

��

α

��

X0

νX0

��

f // r(C)

re(X0)
re(f) // r(C)

where the existence of the morphism s is from the fact that f is a right
X -approximation. Here we just need to take α = νX0 ◦ s. Therefore, the
morphism HomB(X, re(f)) is epic. Equivalently, HomC (e(X), e(f)) is epic.
Hence, for each object C in C , there exists an object e(X0) ∈ e(X ) such that
e(f) : e(X0) → C is a right e(X )-approximation. Consequently, e(X ) is a
contravariantly finite subcategory of C .

(ii) For each object C in C , we have l(C) ∈ B and there exists an object
Y0 ∈ Y such that the morphism g : l(C) → Y0 is a left Y-approximation. We
apply the exact functor e to g, then the natural equivalence el ≃ IdC can
induce a morphism e(g) : C → e(Y0) in C . Now we claim that e(g) is a left
e(Y)-approximation. Indeed, it suffices to show that the sequence

HomC (e(Y0), e(Y )) // HomC (C, e(Y )) // 0

is exact in C , for each object e(Y ) ∈ e(Y), i.e., the morphism HomC (e(g), e(Y ))
is epic. Since (l, e) is an adjoint pair, there is a commutative diagram

HomC (e(Y0), e(Y ))
HomC (e(g),e(Y ))
−−−−−−−−−−−→ HomC (C, e(Y ))

∼=





y

∼=





y

HomB(le(Y0), Y )
HomB(le(g),Y )
−−−−−−−−−−→ HomB(l(C), Y ).

To prove HomC (e(g), e(Y )) is epic, it suffices to show that there exists a mor-
phism β : le(Y0) → Y such that le(g)β = δ, for any δ : l(C) → Y . Suppose
that µ is the counit of the adjoint pair (l, e), then the existence of β can be
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inferred from the following commutative diagram

YOO

δ

cc
β

ZZ

t
l(C)

le(g) // le(Y0)

µY0

��
l(C)

g // Y0

where the existence of the morphism t is from the fact that g is a left Y-
approximation. Here we just need to take β = t◦µY0. Therefore, the morphism
HomB(le(g), Y ) is epic. Equivalently, HomC (e(g), e(Y )) is epic. Hence, for
each object C in C , there exists an object e(Y0) ∈ e(Y) such that e(g) : C →
e(Y0) is a left e(Y)-approximation. Consequently, e(Y) is a covariantly finite
subcategory of C . �

Lemma 2.2. Let (A ,B,C ) be a recollement of abelian categories.

(i) If X is a contravariantly finite subcategory of B, then q(X ) is a con-

travariantly finite subcategory of A .

(ii) If Y is a covariantly finite subcategory of B, then p(Y) is a covariantly

finite subcategory of A .

Proof. (i) For each object A in A , we have i(A) ∈ B and there exists an object
X ′

0 ∈ X such that the morphism f ′ : X ′
0 → i(A) is a right X -approximation.

We apply the functor q to f , then the natural equivalence qi ∼= IdA can induce
a morphism q(f ′) : q(X ′

0) → A in A . Now we claim that q(f ′) is a right
q(X )-approximation. Indeed, it suffices to show that the sequence

HomA (q(X), q(X ′
0)) // HomA (q(X), A) // 0

is exact in A , i.e., the morphism HomA (q(X), q(f ′)) is epic for any q(X) ∈
q(X ). Since (q, i) is an adjoint pair, there is a commutative diagram

HomA (q(X), q(X ′
0))

HomA (q(X),q(f ′))
−−−−−−−−−−−−→ HomA (q(X), A)

∼=





y

∼=





y

HomB(X, iq(X ′
0))

HomB(X,iq(f ′))
−−−−−−−−−−−→ HomB(X, i(A)).

To prove the morphism HomA (q(X), q(f ′)) is epic, it suffices to show HomB(X ,
iq(f ′)) is epic, for any X ∈ X . That is to check that there exists a morphism
α′ : X → iq(X ′

0) such that iq(f ′)α′ = γ′ for any γ′ : X → i(A). Suppose that
λ : IdB → iq is a unit of the adjoint pair (q, i). The existence of α′ can be
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inferred from the following commutative diagram

X

s′

zz
γ′

��

α′

��

X ′
0

λX0

��

f ′

// i(A)

iq(X ′
0)

iq(f ′) // i(A)

where the existence of the morphism s′ is from the fact that f ′ is a right X -
approximation. We just need to take α′ = λX′

0
◦ s′. Therefore, q(X ) is a

contravariantly finite subcategory of A .
(ii) For each object A in A , we have i(A) ∈ B and there exists an object

Y ′
0 ∈ Y such that the morphism g′ : i(A) → Y ′

0 is a left Y-approximation. We
apply the functor p to g′, then the natural equivalence pi ≃ IdA can induce
a morphism p(g′) : A → p(Y ′

0) in A . Now we claim that p(g′) is a left p(Y)-
approximation. Indeed, it suffices to show that the sequence

HomA (p(Y ′
0), p(Y )) // HomA (A, p(Y )) // 0

is exact in A , for each object p(Y ) ∈ p(Y), i.e., the morphism HomA (p(g′), p(Y ))
is epic. Since (i, p) is an adjoint pair, there is a commutative diagram

HomA (p(Y ′
0), p(Y ))

HomA (p(g′),p(Y ))
−−−−−−−−−−−−→ HomA (A, p(Y ))

∼=





y

∼=





y

HomB(ip(Y ′
0), Y )

HomB(ip(g′),Y )
−−−−−−−−−−→ HomB(i(A), Y ).

To prove HomA (p(g′), p(Y )) is epic, it suffices to show that there exists a
morphism β′ : ip(Y ′

0) → Y such that ip(g′)β′ = δ′ for any δ′ : i(A) → Y .
Suppose that κ is the counit of the adjoint pair (i, p), then the existence of β′

can be inferred from the following commutative diagram

YOO

δ′

cc
β′

ZZ

t′
i(A)

ip(g′)// ip(Y ′
0)

κ
Y ′
0

��
i(A)

g′

// Y ′
0

where the existence of the morphism t′ is from the fact that g′ is a left Y-
approximation. Here we just need to take β′ = t′ ◦ κY ′

0
. Therefore, p(Y) is a

covariantly finite subcategory of A . �
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Next we concentrate on the recollement (1.1) in which B has a balanced
pair. The following result shows that A and C also have balanced pairs in this
case.

Proposition 2.3. Let (A , B, C ) be a recollement of abelian categories. If

(X , Y) is a balanced pair in B, then

(i) (e(X ), e(Y)) is a balanced pair in C ;
(ii) (q(X ), p(Y)) is a balanced pair in A .

Proof. (i) According to Lemma 2.1, the pair (e(X ), e(Y)) meets the condition
(BP1). Now we only check (e(X ), e(Y)) satisfies (BP2) and (BP3).
About BP2: Since e(X ) is contravariantly finite in C , it follows that there is
a e(X )-resolution as follows

(2.1) · · · → e(Xn)
δn−→ e(Xn−1) → · · · → e(X1)

δ1−→ e(X0)
δ0−→ H → 0

for each object H ∈ C . It suffices to show that the resolution (2.1) is acyclic by
applying the functor HomC (−, e(Y )), for each object e(Y ) in e(Y). We note
that the induced morphism e(Xn) → Ker δn−1 is a right e(X )-approximation
for arbitrary n ∈ N. Applying the functor l to (2.1), we have the following
complex

(2.2) · · · → le(Xn)
l(δn)
−→ le(Xn−1) → · · · → le(X1)

l(δ1)
−→ le(X0)

l(δ0)
−→ l(H) → 0.

Since (X , Y) is a balanced pair in B, it follows that (2.2) is acyclic by applying
the functor HomB(−, Y ) to (2.2) for all Y ∈ Y. Moreover, since (l, e) is an
adjoint pair, there is the following commutative diagram:

0 // HomB(l(H), Y ) //

∼=

��

HomB(le(X0), Y ) //

∼=

��

· · · // HomB(le(Xn), Y ) //

∼=

��

· · ·

0 // HomC (H, e(Y )) // HomC (e(X0), e(Y )) // · · · // HomC (e(Xn), e(Y )) // · · ·

Thus, the resolution (2.1) is acyclic by applying the functor HomC (−, e(Y )),
for each object e(Y ) in e(Y).
About BP3: For each object H ′ ∈ C , there is a e(Y)-coresolution as follows

(2.3) 0 → H ′ γ0
−→ e(Y0)

γ1
−→ e(Y1) → · · · → e(Yn−1)

γn

−→ e(Yn) → · · ·

since e(Y) is covariantly finite in C . It suffices to show that the coresolution
(2.3) is acyclic by applying the functor HomC (e(X),−), for each object e(X)
in e(X ). We note that the induced morphism Ker γn → e(Yn−1) is a left e(Y)-
approximation for arbitrary n ∈ N. Applying the functor r to (2.3), we have
the following complex

(2.4) 0→r(H ′)
r(γ0)
−→ re(Y0)

r(γ1)
−→ re(Y1) → · · · → re(Yn−1)

r(γn)
−→ re(Yn)→ · · · .

Since (X , Y) is a balanced pair in B, it follows that (2.4) is acyclic by applying
the functor HomB(X,−) to (2.4) for all X ∈ X . Moreover, since (e, r) is an
adjoint pair, there exists the following commutative diagram:
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0 // HomB(X, r(H ′)) //

∼=

��

HomB(X, re(Y0)) //

∼=

��

· · · // HomB(X, re(Yn)) //

∼=

��

· · ·

0 // HomC (e(X), H ′) // HomC (e(X), e(Y0)) // · · · // HomC (e(X), e(Yn)) // · · · .

Thus, the coresolution (2.3) is acyclic by applying the functor HomC (e(X),−),
for each object e(X) in e(X ). Therefore, the proof of the statement (i) is end.

(ii) By Lemma 2.2, the pair (q(X ), p(Y)) meets the condition (BP1). Now
we only check (q(X ), p(Y)) satisfies (BP2) and (BP3).
About BP2: Since q(X ) is contravariantly finite in A , there is a q(X )-
resolution as follows

(2.5) · · · → q(Xn)
αn−→ q(Xn−1) → · · · → q(X1)

α1−→ q(X0)
α0−→ Z → 0

for each object Z ∈ A . It suffices to show that the resolution (2.5) is acyclic by
applying the functor HomA (−, p(Y )), for each object p(Y ) in p(Y). We note
that the induced morphism q(Xn) → Kerαn−1 is a right q(X )-approximation
for arbitrary n ∈ N. Applying the functor i to (2.5), we have the following
complex

(2.6) · · ·→ iq(Xn)
i(αn)
−→ iq(Xn−1) → · · · → iq(X1)

i(α1)
−→ iq(X0)

i(α0)
−→ i(Z)→ 0.

Since (X , Y) is a balanced pair in B, it follows that (2.6) is acyclic by applying
the functor HomB(−, Y ) to (2.6) for all Y ∈ Y. Moreover, since (i, p) is an
adjoint pair, there exits the following commutative diagram:

0 // HomB(i(Z), Y ) //

∼=

��

HomB(iq(X0), Y ) //

∼=

��

· · · // HomB(iq(Xn), Y ) //

∼=

��

· · ·

0 // HomA (Z, p(Y )) // HomA (q(X0), p(Y )) // · · · // HomA (q(Xn), p(Y )) // · · ·

Thus, the resolution (2.5) is acyclic by applying the functor HomA (−, p(Y )),
for each object p(Y ) in p(Y).
About BP3: For each object Z ′ ∈ A , there is a p(Y)-coresolution as follows

(2.7) 0 → Z ′ β0
−→ p(Y0)

β1
−→ p(Y1) → · · · → p(Yn−1)

βn

−→ p(Yn) → · · ·

since p(Y) is covariantly finite in A . It suffices to show that the coresolution
(2.7) is acyclic by applying the functor HomA (q(X),−), for each object q(X)
in q(X ). We note that the induced morphism Kerβn → p(Yn−1) is a left p(Y)-
approximation for arbitrary n ∈ N. Applying the functor i to (2.7), we have
the following complex

(2.8) 0 → i(Z ′)
i(β0)
−→ ip(Y0)

i(β1)
−→ ip(Y1) → · · · → ip(Yn−1)

i(βn)
−→ ip(Yn) → · · · .

Since (X , Y) is a balanced pair in B, it follows that (2.8) is acyclic by applying
the functor HomB(X,−) to (2.8) for all X ∈ X . Moreover, since (q, i) is an
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adjoint pair, there exists the following commutative diagram:

0 // HomB(X, i(Z ′)) //

∼=

��

HomB(X, ip(Y0)) //

∼=

��

· · · // HomB(X, ip(Yn)) //

∼=

��

· · ·

0 // HomA (q(X), Z ′) // HomA (q(X), p(Y0)) // · · · // HomA (q(X), p(Yn)) // · · ·

Thus, the coresolution (2.7) is acyclic by applying the functor HomA (q(X),
−) for each object q(X) in q(X ). Consequently, we finish the proof of the
statements (i) and (ii). �

Corollary 2.4. Let (A , B, C ) be a recollement of abelian categories. If the

balanced pair (X , Y) is admissible in B, then the balanced pairs (e(X ), e(Y))
and (q(X ), p(Y)) are admissible in C and A , respectively.

Proof. Assume that the balanced pair (X , Y) is admissible. According to
the proof of Lemma 2.1 and Lemma 2.2, we then know that the right X -
approximations f : X0 → r(C) and f ′ : X ′

0 → i(A) are epic. Observe that the
functors e is exact and q is right exact. This implies that e(f) : e(X0) → C
and q(f ′) : q(X ′

0) → A are epic. Thus, the contravariantly finite subcategories
e(X ) and q(X ) are admissible. Then the results follows from [7, Corollary 2.3]
immediately. �

Here, we have prepared all the ingredients to state our main result in this
section.

Theorem 2.5. Let (A ,B,C ) be a recollement of abelian categories with an

admissible balanced pair (X ,Y) in B. If X -res.dimB ≤ k and re(X ) ⊆ X ,

iq(X ) ⊆ X , then

(i) e(X )-res.dim(C ) ≤ k;
(ii) if the functor q : B → A is exact, then q(X )-res.dim(A ) ≤ k;
(iii) X -res.dim(B) ≥ max{e(X )-res.dim(C ), q(X )-res.dim(A )}.

Proof. (i) Since X is a contravariantly finite subcategory of B, it follows from
Lemma 2.1(i) that e(X ) is a contravariantly finite subcategory of C . Let C be
an object in C . Since the object r(C) ∈ B and X -res.dim(B) ≤ k, there exists
an X -resolution of r(C)

(2.9) 0 → Tk
tk−→ Tk−1

tk−1
−→ Tk−2 → · · · → T1

t1−→ T0
t0−→ r(C) → 0

with Ti(i = 0, 1, . . . , k) ∈ X such that the induced sequence

0 // HomB(r(C), T ) // HomB(T0, T ) // · · · // HomB(Tk, T ) // 0

is exact for all T ∈ Y. Applying the exact functor e : B → C to (2.9), we
obtain an e(X )-resolution of C

0 // e(Tk)
t∗
k // e(Tk−1)

t∗
k−1 // · · · // e(T1)

t∗1 // e(T0)
t∗0 // C // 0
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with e(Ti)(i = 0, 1, . . . , k) ∈ e(X ). To prove that e(X )-res.dim(C ) ≤ k, it is
enough to show that the induced sequence
(2.10)
0 → HomC (C, e(T )) → HomC (e(T0), e(T )) → · · · → HomC (e(Tk), e(T )) → 0

is exact for all e(T ) ∈ e(Y). Since (e, r) is an adjoint pair, there is the following
commutative diagram:

0 // HomC (er(C), e(T )) //

∼=

��

HomC (e(T0), e(T )) //

∼=

��

· · · // HomC (e(Tk), e(T )) //

∼=

��

0

0 // HomB(r(C), re(T )) // HomB(T0, re(T )) // · · · // HomB(Tk, re(T )) // 0

Since the morphisms T0 → r(C), T1 → Ker(t0), . . ., Tk → Ker (tk−1) are right
X -approximations, it follows that the morphisms e(T0) → er(C), e(T1) →
e(Ker(t0)), · · · , e(Tk) → e(Ker(tk−1)) are right e(X )-approximations. Indeed,
the functor r is fully faithful and re(X ) ⊆ X . This implies that the sequence
(2.10) is exact. Hence, e(X )-res.dim(C ) ≤ k.

(ii) Since X is a contravariantly finite subcategory of B, it follows from
lemma 2.2(i) that q(X ) is a contravariantly finite subcategory of A . Let A be
an object in A . Since X -res.dim(B) ≤ k, there exists an X -resolution of i(A)

(2.11) 0 → Tk
sk−→ Tk−1

sk−1
−→ Tk−2 → · · · → T1

s1−→ T0
s0−→ i(A) → 0

with Ti(i = 0, 1, . . . , k) ∈ X such that the induced sequence

0 // HomB(i(A), T ) // HomB(T0, T ) // · · · // HomB(Tk, T ) // 0

is exact for all T ∈ Y. Applying the exact functor q : B → A to (2.11), we
obtain a q(X )-resolution of A

0 // q(Tk)
s∗
k // q(Tk−1)

s∗
k−1 // · · · // q(T1)

s∗1 // q(T0)
s∗0 // A // 0

with q(Ti)(i = 0, 1, . . . , k) ∈ q(X ). To show that q(X )-res.dim(A ) ≤ k, it is
enough to prove that the induced sequence
(2.12)
0 → HomA (A, q(T )) → HomA (q(T0), q(T )) −→ · · · → HomA (q(Tk), q(T )) → 0

is exact. Since (q, i) is an adjoint pair, there is the following commutative dia-
gram:

0 // HomA (qi(A), q(T )) //

∼=

��

HomA (q(T0), q(T )) //

∼=

��

· · · // HomA (q(Tk), q(T )) //

∼=

��

0

0 // HomB(i(A), iq(T )) // HomB(T0, iq(T )) // · · · // HomB(Tk, iq(T )) // 0

Since the morphisms T0 → i(A), T1 → Ker(s0), . . . , Tk → Ker(sk−1) are right
X -approximations, it follows that the morphisms q(T0) → qi(A), q(T1) →
q(Ker(s0)), . . . , q(Tk) → q(Ker(sk−1)) are right q(X )-approximations. Indeed,
i is fully faithful and iq(X ) ⊆ X . This implies that the sequence (2.12) is exact.
So, we have q(X )-res.dim(A ) ≤ k.
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Finally, the assertion (iii) can be easily obtained from the proofs of (i) and
(ii). �

According to the above theorem and [7, Corollary 2.5], we deduce the fol-
lowing corollary.

Corollary 2.6. Let (A ,B,C ) be a recollement of abelian categories with an

admissible balanced pair (X ,Y) in B. If Y-cores.dimB ≤ k and le(Y) ⊆ Y,
ip(Y) ⊆ Y, then

(i) e(Y)-cores.dim(C ) ≤ k;
(ii) if the functor p : B → A is exact, then p(Y)-cores.dim(A ) ≤ k;
(iii) Y-cores.dim(B) ≥ max{e(Y)-cores.dim(C ), p(Y)-cores.dim(A )}.

3. Applications

This subsection is devoted to applying the above results to the cotilting
cotorsion pairs of special abelian categories, that is, module categories.

For an R-module T , we define the full subcategory ⊥T of mod(R) as follows
⊥T = {M ∈ Mod(R) |ExtnR(M,T ) = 0 for any n ∈ N}.

Recall from [1, Definition 2.1] that an R-module T is said to be cotilting, if
it satisfies the following three conditions:

(CT1) inj.dim(T ) ≤ ∞;
(CT2) T ∈⊥ T ;
(CT3) For any X ∈⊥ T , there exists a short exact sequence

0 // X // T ′ // X ′ // 0

with X ′ ∈⊥ T , T ′ ∈ add(T ), where add(T ) denotes the class of direct
summands of direct sums of copies of T .

There is a well-known example of cotilting modules. For instance, for a finite
dimensional algebra R and a field K and a tilting Rop-module T , the K-dual
of T , DT is a cotilting R-module.

Recall that a pair (X ,Y) of subcategories in an abelian category B is called a
cotorsion pair provided that X =⊥ Y and Y = X⊥. Furthermore, the cotorsion
pair (X ,Y) is complete provided that for each object M in B there exists two
short exact sequences

0 // Y // X // M // 0

and
0 // M // Y ′ // X ′ // 0

with X,X ′ ∈ X and Y, Y ′ ∈ Y.
A cotorsion pair (X ,Y) is said to be hereditary provided that X is resolving,

or equivalently, Y is coresolving. The reader may refer to [7] and [11] for
resolving and coresolving subcategories.

Given a cotilting module T in Mod(R), we will write XT instead of ⊥T .
Moreover, we set
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YT := {N ∈ Mod(R) |ExtnR(M,N) = 0 for any n ∈ N and any M ∈ XT }.

We know from [11, Chapter 8] that the pair (XT ,YT ) generated by T is hered-
itary and complete.

Proposition 3.1. Let Mod(R) be a module category with a cotilting object T .
Then the cotilting cotorsion pair (XT ,YT ) is an admissible balanced pair in

Mod(R).

Proof. Firstly, we claim that the cotilting cotorsion pair (XT ,YT ) is a balanced
pair. To show this, it suffices to check that it satisfies (BP1), (BP2) and (BP3)
of the balanced pair.
About (BP1): From the above consideration, we know that the cotilting
cotorsion pair (XT ,YT ) is complete. For each R-module M , there exists two
short exact sequences as follows

ξ : 0 // Y // X
f // M // 0 ,

γ : 0 // M
g // Y ′ // X ′ // 0

with X ∈ XT , Y ∈ YT and X ′ ∈ XT , Y
′ ∈ YT . It follows from [10, Defini-

tion 7.1.6] that the sequence ξ is a special right XT -approximation, and γ a
special left YT -approximation. In particular, we have that f is a right XT -
approximation and g is a left YT -approximation. Thus XT is contravariantly
finite and YT is covariantly finite.
About (BP2): For each R-module M , we let

(3.1) · · · // Xn
εn //

��

· · · // X1
ε1 //

��

X0
ε0 // M // 0

Ker(ǫn−1) = Kn−1

*




77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

· · · Ker(ǫ0) = K0

+

�

99
r
r
r
r
r
r
r
r
r
r

be an XT -resolution of M . The fact that (XT ,XT ∩ YT ) is complete implies
that there is a short exact sequence as follows

δ0 : 0 // K0
// X0

// M // 0

with X0 ∈ XT and K0 ∈ XT ∩ YT . Now we take a short exact sequence

0 // K0
// I // Y1

// 0

with injective envelope I. The fact that the pair (XT ,XT ∩ YT ) is hereditary
implies that XT ∩ YT is coresolving. Note that K0, I ∈ XT ∩ YT , we have that
Y1 ∈ XT ∩ YT . Observe the following commutative diagram:

0 // K0
// X0

α

��

// M

β

��

// 0

0 // K0
// I // Y1

// 0,
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where the existence of the map α is from the injectivity of I and the existence
of the map β is from the universal properties of the cokernel. Now applying
the functor HomR(−, Z) for all Z ∈ YT to the above diagram, then we have

0 // HomR(Y1, Z)

��

// HomR(I, Z)

��

// HomR(K0, Z) // Ext1R(Y1, Z)

0 // HomR(M,Z) // HomR(X0, Z) // HomR(K0, Z).

Since ExtnR(Y1, Z) = 0 for any n ∈ N, it follows that the map HomR(I, Z) →
HomR(K0, Z) is surjective. We also note that the above map can be factors as:

HomR(X0, Z)

��

66

♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥
♥

HomR(I, Z) // // HomR(K0, Z)

Therefore, the map HomR(X0, Z) → HomR(K0, Z) is surjective. Similarly, for
the short exact sequences

δn(n ≥ 1) : 0 // Kn
// Xn

// Kn−1
// 0

we can deduce that the maps HomR(Xn, Z) → HomR(Kn, Z) (n ≥ 1) is
surjective. Therefore, the sequence (3.1) is acyclic by applying the functors
HomR(−, Z) for all Z ∈ YT .
About (BP3): For each R-module N , we let
(3.2)

0 // N
ω0 // Y0

��

ω1 // Y1
// · · · // Yn−1

��

ωn // Yn
// · · ·

K0
.

�

>>
⑤
⑤
⑤
⑤
⑤
⑤
⑤

· · · Kn−1
-



<<
②
②
②
②
②
②
②
②

be a YT -coresolution of N . The fact that (XT ∩ YT ,YT ) is complete implies
that there exists a short exact sequence as follows

δ0 : 0 // N // Y0
// K0 // 0

with Y0 ∈ YT and K0 ∈ XT ∩ YT . Here we take a short exact sequence

0 // X1 // P // K0 // 0

with projective cover P and X1 = Ker(P → K0). The fact that the pair
(XT∩YT ,YT ) is hereditary implies that XT∩YT is resolving. Note thatK0, P ∈
XT ∩ YT , we have that X1 ∈ XT ∩ YT . Observe the following commutative
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diagram:

0 // X1

α′

��

// P

β′

��

// K0 // 0

0 // N // Y0
// K0 // 0,

where the existence of the map β′ is from the projectivity of P and the existence
of the map α′ is from the universal properties of the kernel. Now applying the
functor HomR(X,−) for all X ∈ XT to the above diagram, then we have

0 // HomR(X,X1)

��

// HomR(X,P )

��

// HomR(X,K0) // Ext1R(X,X1)

0 // HomR(X,N) // HomR(X,Y0) // HomR(X,K0).

Since ExtnR(X,X1) = 0, it follows that the map HomR(X,P ) → HomR(X,K0)
is surjective. We also note that the above map can be factors as

HomR(X,Y0)

��

66

♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

HomR(X,P ) // // HomR(X,K0).

Therefore, the map HomR(X,Y0) → HomR(X,K0) is surjective. Similarly, for
the short exact sequences

δn(n ≥ 1) : 0 // Kn−1 // Yn
// Kn // 0

we can deduce that the maps HomR(X,Yn) → HomR(X,Kn) (n ≥ 1) is
surjective. Therefore, the sequence (3.2) is acyclic by applying the functors
HomR(X,−) for all X ∈ XT .

Next we will show that the pair (XT ,YT ) is admissible. By the assump-
tion of the subcategory XT , it is easy to see that XT contains all the projective
R-modules. Thus, all right XT -approximations are epic, that is, the contravari-
antly finite subcategory XT is admissible. Following from [10, Corollary 2.3],
we obtain that YT is coadmissible. Consequently, the cotilting cotorsion pair
(XT ,YT ) is an admissible balanced pair in Mod(R). �

In order to show our application in this subsection, we will study triangular
matrix algebras. Now we recall some facts on triangular matrix algebras. Let
Λ =

[

A M
0 B

]

be an upper triangular matrix algebra, where A, B are K-algebras
and M is an A-B-bimodule. Given a right A-module X , a right B-module
Y , and a right B-module morphism f : X ⊗A M → Y , we define the right
Λ-module structure on (X,Y, f) by the following identity

(x, y) ◦
[ a m
0 b

]

= (xa, f(x⊗m) + yb).

The reader is referred to [4, III.2, Proposition 2.1] and [12] for more details.
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Lemma 3.2 ([12, Proposition 2.7], [16, Example 2.7], [17, Example 2.10]). Let

Λ =
[

A M
0 B

]

be the triangular matrix algebra defined above. Then there exists a

recollement as follows

(3.3) Mod(A)
i=inc // Mod(Λ)

q=A⊗Λ−

xx

p=HomΛ(A,−)

hh
e=HomΛ(B,−)// Mod(B)

r=HomB(B,−)

hh

l=B⊗B−

yy
.

Lemma 3.3. Let (Mod(A),Mod(Λ),Mod(B)) be a recollement of module cat-

egories with a cotilting object T in Mod(Λ). Then we have

(i) e(T ) is cotilting in Mod(B);
(ii) p(T ) is cotilting in Mod(A);
(iii) Xe(T ) = e(XT );
(iv) Ye(T ) = e(YT );
(v) Xq(T ) = q(XT );
(vi) Yq(T ) = q(YT ).

Proof. We assume that T = (X,Y, ϕ) is the cotilting right Λ-module. Then it
is easy to see that there are three cases for T = (X,Y, ϕ).

T =











T1 = (TA, 0, 0),where TA is a cotilting right A-module;

T2 = (0, TB, 0),where TB is a cotilting right B-module;

T3 = (TA, T ⊗A M, 1T⊗AM ),where TA is a cotilting right A-module.

Following from [12, Proposition 2.4], we can deduce that

e(T ) =

{

TB,when T = T2;

T ⊗A M,when T = T3,

and p(T ) = TA. Clearly, the assertion that p(T ) is cotilting holds naturally.
And the assertion e(T ) also holds for the case T = T2. Now we will check that
e(T ) = T ⊗A M satisfies the definition of the cotilting.
About (CT1): Since the injective dimension of T is finite, we assume that
inj.dim(TΛ) = n < ∞. There exists an injective coresolution of TΛ as follows

0 // TΛ
// I0Λ // I1Λ // · · · // In−1

Λ
// InΛ // 0 .

After applying the exact functor e, we get an injective coresolution of e(T )

0 // e(TΛ) // e(I0Λ)
// e(I1Λ)

// · · · // e(In−1
Λ ) // e(InΛ)

// 0 .

Indeed, we note that the functor l = B⊗B− is exact, we have that the functor e
preserves injective objects. Namely, e(IiΛ)(i = 0, 1, . . . , n) are injective modules
in Mod(B). So inj.dim(e(T )) < ∞.
About (CT3): For any M ∈⊥ (eT ), there exists an object L in Mod(Λ) such
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that e(L) = M . Since ExtnB(e(L), e(T )) = 0, it follows that ExtnΛ(L, T ) = 0.
So L ∈⊥ T . There exists a short exact sequence

0 // L // T ′ // X ′ // 0

with T ′ ∈ add(T ) and X ′ ∈⊥ T . Applying the functor e we obtain that the
following exact sequence

0 // e(L) // e(T ′) // e(X ′) // 0

with e(T ′) ∈ adde(T ) and e(X ′) ∈⊥ e(T ) since e preserves direct sums and it
is exact.

The fact that ExtnΛ((X,Y, α), (X ′, Y ′, α′)) = 0 if and only if ExtnA(p(X,Y, α),
p(X ′, Y ′, α′)) = ExtnA(X,X ′) = 0 and

ExtnB(e(X,Y, α), e(X ′, Y ′, α′)) = ExtnB(Y, Y
′) = 0

for any right Λ-modules (X,Y, α) and (X ′, Y ′, α′) implies (CT2) and the asser-
tions (iii-vi). �

The following result is a direct consequence of Theorem 2.5 and Proposition
3.1.

Corollary 3.4. Let (Mod(A),Mod(Λ),Mod(B)) be a recollement of module

categories with a cotilting object T in Mod(Λ). Then we have

(i) the pair (e(XT ), e(YT )) is an admissible balanced pair;
(ii) the pair (q(XT ), p(YT )) is an admissible balanced pair;
(iii) XT -res.dim(Mod(Λ))

≥ max{e(XT )-res.dim(Mod(B)), q(XT )-res.dim(Mod(A))};
(iv) YT -cores.dim(Mod(Λ))

≥ max{e(YT )-cores.dim(Mod(B)), p(YT )-cores.dim(Mod(A))}.
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