• Title/Summary/Keyword: resistant to pathogenic bacteria

Search Result 131, Processing Time 0.026 seconds

Four Year Trend of Carbapenem-Resistance in Newly Opened ICUs of a University-Affiliated Hospital of South Korea

  • Kim, Bo-Min;Jeon, Eun-Ju;Jang, Ju-Young;Chung, Jin-Won;Park, Ji-Hoon;Choi, Jae-Chol;Shin, Jong-Wook;Park, In-Won;Choi, Byoung-Whui;Kim, Jae-Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.4
    • /
    • pp.360-366
    • /
    • 2012
  • Background: Carbapenem-resistance is rapidly evolving among the pathogenic microbes in intensive care units (ICUs). This study aimed to determine annual trend of carbapenem-resistance in the ICU for 4 years, since the opening of a university-affiliated hospital in South Korea. Methods: From 2005 to 2008, microbial samples from consecutive 6,772 patients were screened in the ICU. Three hundred and ninety-seven patients (5.9%) and their first isolates of carbapenem-resistant pathogens were analyzed. Results: The percentage of patients infected with carbapenem-resistant organisms increased constantly during the initial three years (2.3% in 2005, 6.2% in 2006, 7.8% in 2007), then it declined to 6.5% in 2008. Acute Physiology and Chronic Health Evaluation (APACHE) III score at admission was $58.0{\pm}23.5$, the median length of the ICU stay was 37 days, and the mortality rate was 37.5%. The sampling sites were endotracheal suction (67%), catheterized urine (17%), wound (6%) and others (10%). Bacteria with carbapenem-resistance were Pseudomonas aeruginosa (247 isolates, 62%), Acinetobacter baumannii (117 isolates, 30%), Enterobacteriaceae (12 isolates, 3%), and others (21, 5%). Of note, peak isolation of carbapenem-resistant microorganisms in medical ICU was followed by the same epidemic at surgical ICU. Conclusion: Taken together, carbapenem-resistant pathogens are of growing concern in the ICU.

Antimicrobial activity of 7,10-epoxy-octadeca-7,9-dienoic acid crude extract against methicillin-resistant Staphylococcus aureus (메티실린 저항성 황색포도상구균에 대한 7,10-epoxy-octadeca-7,9-dienoic acid 조추출물의 항균 활성 연구)

  • Su-Hyeon Son;Ye-Ji Park;Su-Hyeon Lee;Ju-Hyeon Choi;Hak-Ryul Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.98-104
    • /
    • 2023
  • Effective and alternative strategies to control methicillin-resistant Staphylococcus aureus (MRSA) are consistently needed. Previous study presented that 7,10-epoxy-octadeca-7,9-dienoic acid (EODA) was produced from 7,10-dihydroxy-8(E)-octadecenoic acid through one-step heat treatment. Further studies confirmed that EODA was highly active against broad range of pathogenic bacteria including MRSA, promising development of a novel antibacterial agent to control MRSA. However, there are some practical huddles for industrialization of EODA, especially high cost for fine purification. To address this problem, this study was focused on determination of any changes in the antibacterial activities of EODA when used as a crude extract. As a result, any significant changes in the antibacterial activities of EODA was not detected and additional synergistic effect for commercial antibiotics on antibacterial activity was sustained as it was.

Probiotic Potential of Plant-Derived Lactic Acid Bacteria with Antihypertensive Activity (항고혈압 활성을 가진 식물유래 젖산균의 생균제 특성)

  • Lee, Ye-Ram;Son, Young-Jun;Park, Soo-Yun;Jang, Eun-Young;Yoo, Ji-Yeon;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.789-798
    • /
    • 2016
  • Lactic acid bacteria (LAB) are industrially important microorganisms for probiotics. The recent widespread application of LAB for preparation of functional food is attributable to the accumulating scientific evidence showing their beneficial effects on human health. In this study, we isolated and characterized plant-derived LAB that show angiotensin-converting enzyme (ACE) inhibitory and antioxidant activities. The selected strain K2 was isolated from Kimchi, and identified as Lactobacillus plantarum by 16S rRNA gene analysis. The strain grew under static and shaking culture systems. They were also able to grow in different culture conditions like $25^{\circ}C{\sim}37^{\circ}C$ temperature, 4~10 pH range and ~6% NaCl concentration. L. plantarum K2 was highly resistant to acid stress; survival rate of the strain at pH 2.5 and 3 were 80% and 91.6%, respectively. The strain K2 also showed high bile resistance to 0.3% bile bovine and 0.3% bile extract with more than 74% of survival rate. The cell grown on MRS agar plate containing bile extract formed opaque precipitate zones around the colonies, indicating they have bile salt hydrolase activity. The strain showed an inhibitory activity against pathogenic bacteria such as Escherichia coli, Staphylococcus aureus and Listeria monocytogenes; antibacterial activity was probably due to the lactic acid. The K2 strain showed relatively higher autoaggregation values, antihypertensive and antioxidant activities. These results suggest that L. plantarum K2 could be not only applied as a pharmabiotic for human health but also is also starter culture applicable to fermentative products.

Antioxidant Activity of Native Korean Halophyte Extracts and Their Anti-biofilmActivity against Acinetobacter baumannii (한국 자생 염생식물 추출물의 항산화 활성 및 다재내성 Acinetobacter baumannii에 대한 항생물막 활성)

  • Eun Seong Lee;Jeong Woo Park;Ki Hwan Moon;Youngwan Seo
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1015-1024
    • /
    • 2023
  • Antibiotics have greatly contributed to the treatment and prevention of bacterial diseases in humans, animals, and fish. However, antibiotic misuse has led to the emergence and spread of multidrug-resistant bacteria. In addition to antibiotic discovery research, efforts are being made to combat such multidrug-resistant bacteria using antimicrobial agents, antioxidants, host immune enhancement, probiotics, and bacteriophages, as well as various symptomatic therapies. To discover novel bioactive compounds, it is crucial to adopt approaches that incorporate fresh ideas, new targets, innovative techniques, and untapped resources. Halophytes are plants that grow in high-salt soils and are known to adapt to salt-induced stress through unique metabolic processes that produce secondary metabolites. This study aimed to investigate the effects of extracts of halophytes native to Korea on oxidative stress and to determine whether they exert inhibitory activity against biofilms, which are major pathogenic factors of infectious bacteria. The Acinetobacter baumannii strain ATCC 17978, a representative drug-resistant bacterium, was used to measure anti-biofilm activity. The results showed that Aster spathulifolius, Carex kobomugi, Rosa rugosa, and Asparagus cochinchiensis exerted strong antioxidant and anti-biofilm effects without affecting bacterial growth itself. The halophytes used in this study are promising candidates for the development of pharmaceutical agents with antioxidant and antimicrobial properties.

Genotype Analyses of Methicillin Resistant Staphylococcus aureus Isolated from clinical specimens (임상검체로부터 분리된 Methicillin 내성 Staphylococcus aureus의 유전자형 분석)

  • Kim, Jean-Soo;Park, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3315-3322
    • /
    • 2015
  • Staphylococcus aureus is the major causative organism of nasocomial infection being the important pathogen in the clinic. Appearance of staphylococcus aureus resistant to methicillin (MRSA) is becoming a big problem in clinics and dynamics all over the world acquiring antibiotic resistance with virulence factors as its feature differentiated from other pathogenic bacteria fast. This research intended to compare and analyze the correlation of antibiotics resistance between strains with toxin genes and distribution of toxin genes of MRSA 101 strains acquired from clinical specimen in one general hospital (enterotoxin(se), toxic shock syndrome toxin-1(tst), exfoliative toxin(et), Panton Valentine leukocidin(pvl)). seg gene, isolated the most among toxin genes, was detected in 59 strains (58.4%) and more than two toxin genes were detected in 70 strains (69.3%). As a combination possessing toxin genes, it was detected in 19 strains (18.8%) as seb, sec, seg, sei, tst and the second frequent combination was sec, seg, sei shown in 11 strains (10.9%). 19 strains (18.8%) with combinations of toxin genes same with seb, sec, seg, sei, tst had 100% resistance Ampicillin, Benzylpenicillin, Ciprofloxacin, Clindamycin, Gentamicin, Erythromycin, Telithromycin, Tetracycline antibiotics. Strains with many toxin genes showed high correlation of antibiotic resistance. Afterwards, effective therapy and thorough infection management should be preceded not to spread the resistance of MRSA strain.

Biochemical Properties and Application of Bacteriocins Derived from Genus Bacillus (Bacillus속 세균 유래 박테리오신의 특성과 응용)

  • Ji-Young Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Bacteriocins are antimicrobial peptides synthesized on ribosomes, produced by bacteria, that inhibit the growth of similar or closely related bacterial strains. Since the discovery of nisin, many bacteriocins with unique structures and various modes of antibacterial activity have been described, and genes encoding production, secretion, and immunity have been reported. Nisin is one of the bacteriocins applied in cheese, liquid eggs, sauces and canned foods. Many of the bacteriocins of the genus Bacillus belong to lantibiotics, which are modified peptides after translation. Other genus Bacillus also produce many non-lantibiotic bacteriocins. Bacteriocins of the genus Bacillus are sometimes becoming more important because of their broader antibacterial spectrum. Bacteriocins are considered attractive compounds in the food and pharmaceutical industries to prevent food spoilage and growth of pathogenic bacteria. Bacteriocins can be used as biological preservatives in a variety of ways in the food system. Biopreservation refers to extending shelf life and improving safety of foods using microorganisms and/or their metabolites. The demand for new antimicrobial compounds has generated great interest in new technologies that can improve food microbiological safety. Applications of bacteriocins are expanding from food to human health. Today, many researchers are shifting their interest in bacteriocins from food preservation to the treatment of bacteria that cause infections and antibiotic-resistant diseases. This exciting new era in bacteriocin research will undoubtedly lead to new inventions and new applications. In this review, we summarize the various properties and applications of bacteriocins produced by the genus Bacillus.

Isolation and Characterization of Plant-Derived Lactic Acid Bacteria as Potential Probiotic (잠재적 생균제로서 식물 젖산균의 분리 및 특성)

  • Kim, Jeong-Do;Park, Sung-Bo;Lee, Na-Ri;Jeong, Jin-Ha;Lee, Hee-Seob;Hwang, Dae-Youn;Lee, Jong-Sup;Jeong, Seong-Yun;Son, Hong-Joo
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.308-312
    • /
    • 2011
  • Plant lactic acid bacteria were isolated from plant-associated fermentative foods and crops, and their probiotic properties were investigated. Isolates K27 and O2 were isolated from Kimchi and onion, and identified as Lactobacillus plantarum on the basis of 16S rRNA gene analysis. The two strains were highly resistant to acid (an MRS broth at pH 2.5), where the survival rates of L. plantarum K27 and L. plantarum O2 were 90.2% and 97.3%, respectively. L. plantarum K27 and L. plantarum O2 also showed high bile resistance to 0.5% oxgall, with a more than 70% survival rate. They showed an inhibitory effect against pathogenic strains of Escherichia coli KCCM 40880 and Pseudomonas aeruginosa ATCC 10145. The antibacterial effect of the two strains was probably due to the presence of lactic acid. ACE inhibitory activities of the two strains ranged from 72.8% to 80.6% in MRS broth. Notably, the two strains showed high ACE inhibitory activity (89.2~98.2%) in MRS broth containing 10% skim milk. Antioxidant activity was tested by DPPH radical scavenging activity, with antioxidant activities of the strains being in the range of 56.8~61.5%. The results obtained in this study suggest that L. plantarum K27 and L. plantarum O2 may be potential probiotic starter cultures with applications with fermentative products.

Large-Scale Production of Cronobacter sakazakii Bacteriophage Φ CS01 in Bioreactors via a Two-Stage Self-Cycling Process

  • Lee, Jin-Sun;Kim, Gyeong-Hwuii;Kim, Jaegon;Lim, Tae-Hyun;Yoon, Yong Won;Yoon, Sung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1430-1437
    • /
    • 2021
  • Cronobacter sakazakii is an opportunistic pathogenic bacterium found in powdered infant formula and is fatal to neonates. Antibiotic resistance has emerged owing to overuse of antibiotics. Therefore, demand for high-yield bacteriophages as an alternative to antibiotics has increased. Accordingly, we developed a modified mass-production method for bacteriophages by introducing a two-stage self-cycling (TSSC) process, which yielded high-concentration bacteriophage solutions by replenishing the nutritional medium at the beginning of each process, without additional challenge. pH of the culture medium was monitored in real-time during C. sakazakii growth and bacteriophage CS01 propagation, and the changes in various parameters were assessed. The pH of the culture medium dropped to 5.8 when the host bacteria reached the early log phase (OD540 = 0.3). After challenge, it decreased to 4.65 and then recovered to 4.94; therefore, we set the optimum pH to challenge the phage at 5.8 and that to harvest the phage at 4.94. We then compared phage production during the TSSC process in jar-type bioreactors and the batch culture process in shaker flasks. In the same volume of LB medium, the concentration of the phage titer solution obtained with the TSSC process was 24 times higher than that obtained with the batch culture process. Moreover, we stably obtained high concentrations of bacteriophage solutions for three cycles with the TSSC process. Overall, this modified TSSC process could simplify large-scale production of bacteriophage CS01 and reduce the unit cost of phage titer solution. These results could contribute to curing infants infected with antibiotic-resistant C. sakazakii.

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Isolation and Characterization of a Protease-Producing Bacterium, Bacillus amyloliquefaciens P27 from Meju as a Probiotic Starter for Fermented Meat Products

  • Lee, Mi-Sun;Lee, Na-Kyoung;Chang, Kyung-Hoon;Choi, Shin-Yang;Song, Chi-Kwang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.804-810
    • /
    • 2010
  • This study was performed to select protease-producing Bacillus sp. as a potential probiotic starter for fermented meat products. In order to isolate protease-producing bacterium from meju, measured the diameter of the clear zone on agar plate (TSA, 1% (w/v) skim milk) and analyzed for intracellular protease activity, then 10 Bacillus-like strains were isolated. Three Bacillus-like strains (P19, P27, and P33) among 10 strains were able to tolerate in acidic condition (TSB, pH 2.5, 2 h incubation). These 3 strains were showed antimicrobial activity against food-borne pathogenic bacteria. These vegetative cells of 3 strains were showed a survival rate of 0.04% to 0.08% under the artificial gastric acidic condition (TSB, pH 2.5 with 1% (w/v) pepsin), but spore-forming cells were 56.29% to 84.77%. Vegetative cells of 3 strains were the least bile-resistant, while spore-forming cells of 3 strains showed higher survival rate more than 76% under artificial bile condition (TSB, 0.1% (w/v) oxgall bile). In these strains, P27 strain was finally selected as a good probiotic strain. P27 strain was tentatively identified as Bacillus amyloliquefaciens by API CHB kit and 16S rDNA sequence analysis. The results of this study suggest that B. amyloliquefaciens P27 can be used as a potential probiotic starter for fermented meat product.