• Title/Summary/Keyword: resistance to fungal growth

Search Result 78, Processing Time 0.026 seconds

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Assessment of Fungal Growth Resistance in Silicone Sealants According to Test Methods (시험법에 따른 실리콘 실란트의 곰팡이 저항성 평가)

  • Ahn, Myung-Su;Choi, Sung-Hyun;Lee, Ki-Hyang;Nah, Changwoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2024
  • This research undertook the assessment of six types of silicone sealants prepared. Their resistance to fungi was evaluated according to ASTM G 21, LH specification(LHCS 41 40 12), and the newly instituted KS F ISO 21265 test methods. The findings showed that KS F ISO 21265 test method exhibited the superior discriminative capability in assessing fungal resistance when compared to ASTM G 21 and LH specification(LHCS 41 40 12) test methods. Additionally, it was confirmed that oxime curing sealants demonstrated higher fungal resistance than alkoxy curing sealants. Furthermore, The introduction of a condition to assess fungal resistance after 4 weeks of immersion at 50℃ in KS F ISO 21265 is expected to enable long-term fungal resistance evaluation of sealants.

Cross- and Double-Resistance of Benomyl-Resistant Botryosphaeria dothidea (Benomyl에 저항성인 사과 겹무늬썩음병균의 교차 및 이중저항성)

  • 이창은;박석희
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.270-276
    • /
    • 1994
  • Mycelial growth resistant isolates of Botryosphaeria dothidea to benomyl showed 99~79% spore germination on the PSA media supplemented with 200~2,100 $\mu\textrm{g}$/ml of carbendazim and thiophanate-methyl to manifest the high cross-resistance in spore germination. Mycelial growth, 23~9 mm in colony diameter, also manifested the high cross-resistance of mycelial growth together with similarity of spore forming cross-resistance. Benomyl resistant isolates BR1, BR2 and BR3, grew 23~10 mm in colony diameter at 330~3,000 $\mu\textrm{g}$/ml of captafol, captan and oxine-copper showing the high double resistance of mycelial growth and spore formation with minor difference. However, within concentration range of the 3 fungicides tested, germinations of all the tested isolates were completely suppressed to show no double-resistance in the fungal spore germination.

  • PDF

Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases

  • Duraisamy, Kalaiselvi;Ha, Areum;Kim, Jongmun;Park, Ae Ran;Kim, Bora;Song, Chan Woo;Song, Hyohak;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.38 no.3
    • /
    • pp.182-193
    • /
    • 2022
  • Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

Studies on the Varietal Resistance and Effects of Nutrients for Fungal Growth of Pepper Anthracnose Disease Caused by Colletotrichum dematium f. sp. capsicum (고추 탄달병(炭疸病)에 대한 품종(品種) 저항성(抵抗性) 및 병원균(病原菌) 생장(生長)에 미치는 영양원(營養源)의 효과(效果))

  • Chang, Sun-Hwa;Chung, Bong-Koo
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.227-233
    • /
    • 1985
  • Studies on the varietal resistance and effects of nutrients for fungal growth were carried out in order to obtain basic materials for breeding resistant variety and control measures of the red pepper anthracnose disease caused by Colletotrichum dematium f. sp. capsicum. Four cultivars such as Kumchang No. 2, Bulamhouse, Pakistan, Hongilpum were resistant among twenty-one pepper cultivars, and five cultivars including Taiwan pepper were moderate. The remaining twelve cultivars including H-038 and Saegochu were susceptible. These susceptible cultivars were mostly belonged to sweet taste cultivars. Glucose was known the best source for fungal growth, and near 3 percent of carbon concentration was the best for mycelial growth of the fungus. Conidial sporulation was rather decreased by adding high concentrations of C-source, whereas fungal dry weight was a positive tendency in proportion to increasing carbon concentrations. N-sources and vitamins were not remarkable as that for carbon, and rather a decreasing trend for mycelial growth by adding N-source. Especially, the lowest of mycelial growth was in the case of Czapek-Dox plus ammonium sulfate. The medium plus vitamins either niacin or thiamine was slightly increased to mycelial growth.

  • PDF

Ultrastructures of Colletotrichum orbiculare in the Leaves of Cucumber Plants Expressing Induced Systemic Resistance Mediated by Glomus intraradices BEG110

  • Jeun, Yong-Chull;Lee, Yun-Jung;Kim, Ki-Woo;Kim, Su-Jung;Lee, Sang-Woo
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.236-241
    • /
    • 2008
  • The colonization of an arbuscular mycorrhizal fungus Glomus intraradices BEG110 in the soil caused a decrease in disease severity in cucumber plants after fungal inoculation with Colletotrichum orbiculare. In order to illustrate the resistance mechanism mediated by G. intraradices BEG110, infection patterns caused by C. orbiculare in the leaves of cucumber plants and the host cellular responses were characterized. These properties were characterized using transmission electron microscopy on the leaves of cucumber plants grown in soil colonized with G. intraradices BEG110. In the untreated plants, inter- and intra-cellular fungal hyphae were observed throughout the leaf tissues during both the biotrophic and necrotrophic phases of infection. The cytoplasm of fungal hyphae appeared intact during the biotrophic phase, suggesting no defense response against the fungus. However, several typical resistance responses were observed in the plants when treated with G. intraradices BEG110 including the formation of sheaths around the intracellular hyphae or a thickening of host cell walls. These observations suggest that the resistance mediated by G. intraradices BEG110 most often occurs in the symplast of the host cells rather than in the apoplast. In addition, this resistance is similar to those mediated by biotic inducers such as plant growth promoting rhizobacteria.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi;Lee, Ha Kyung;Jeong, Ui-Seon;Baek, So Hyeon;Noh, Tae-Hwan;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Morphogenetic Alterations of Alternaria alternata Exposed to Dicarboximide Fungicide, Iprodione

  • Kim, Eunji;Lee, Hye Min;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.95-100
    • /
    • 2017
  • Fungicide-resistant Alternaria alternata impede the practical control of the Alternaria diseases in crop fields. This study aimed to investigate cytological fungicide resistance mechanisms of A. alternata against dicarboximide fungicide iprodione. A. alternata isolated from cactus brown spot was cultured on potato-dextrose agar (PDA) with or without iprodione, and the fungal cultures with different growth characteristics from no, initial and full growth were observed by light and electron microscopy. Mycelia began to grow from one day after incubation (DAI) and continued to be in full growth (control-growth, Con-G) on PDA without fungicide, while on PDA with iprodione, no fungal growth (iprodione-no growth, Ipr-N) occurred for the first 3 DAI, but once the initial growth (iprodione-initial growth, Ipr-I) began at 4-5 DAI, the colonies grew and expanded continuously to be in full growth (iprodione-growth, Ipr-G), suggesting Ipr-I may be a turning moment of the morphogenetic changes resisting fungicidal toxicity. Con-G formed multicellular conidia with cell walls and septa and intact dense cytoplasm. In Ipr-N, fungal sporulation was inhibited by forming mostly undeveloped unicellular conidia with degraded and necrotic cytoplasm. However, in Ipr-I, conspicuous cellular changes occurred during sporulation by forming multicellular conidia with double layered (thickened) cell walls and accumulation of proliferated lipid bodies in the conidial cytoplasm, which may inhibit the penetration of the fungicide into conidial cells, reducing fungicide-associated toxicity, and may be utilized as energy and nutritional sources, respectively, for the further fungal growth to form mature colonies as in Ipr-G that formed multicellular conidia with cell walls and intact cytoplasm with lipid bodies as in Con-G.

Assessment of Endophytic Fungal Diversity and Beyond

  • Kim, Soonok
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.20-20
    • /
    • 2015
  • Endophytic fungi are microorganisms inhabiting living plant tissues without causing apparent harm to the host. They are drawing increasing attention due to their ability to produce various bioactive compounds as well as their effects on host growth and resistance to biotic and abiotic stresses. As a first step to assess biodiversity of plant associated fungi in Korea and the following evaluation on diverse biological activities, we are collecting endophytic fungi from plant in wild followed by systematic long-term storage in liquid nitrogen. Molecular identification using ITS sequences was also incorporated for pure culture by hyphal tip isolation. As of April 2015, about 1,400 fungal strains had been isolated from about 170 plant taxa. Fungal isolates belonging to Pleosporales, Diaporthales, Glomerellales, Hypocreales, and Xylariales were the most abundant. These collections are being used for several complementary researches, including screening of isolates with novel bioactive compounds or conferring drought stress resistance, phylogenetic and genomic study. Genome sequencing was performed for 3 isolates, one Xylaria sp. strain JS573 producing griseofulvin, an antifungal compound, and two Fusarium spp. strains JS626 and JS1030, which are assumed to be new species found in Korea. More detailed analysis on these genomes will be presented. These collections and genome informations will serve as invaluable resources for identifying novel bioactive materials in addition to expand our knowledge on fungal biodiversity.

  • PDF