• 제목/요약/키워드: resistance mechanism

검색결과 1,441건 처리시간 0.031초

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

일반교량 하부구조의 내진설계 (Earthquake Resistance Design for a Typical Bridge Substructure)

  • 국승규
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2011
  • 내진설계에서 설계자가 제시해야 하는 사항은 구조물의 항복과정이 원칙적으로 연성파괴메카니즘으로 구성되는 것이다. 일반교량의 연성파괴메카니즘은 연결부분과 교각기둥 두 구조부재 중 교각기둥이 먼저 항복하도록 설계되어야 한다. 그러나 불필요하게 강성이 큰 하부구조가 사용되는 국내의 설계관행에 의해 지진하중은 크게 발생하게 되므로 연성파괴메카니즘을 확보하기가 어렵다. 이러한 문제는 내진설계가 기본설계 단계에서 수행되지 않아 발생한다. 이 연구에서는 일반교량을 해석대상 교량으로 선정하고 기본설계 단계에서 연결부분과 하부구조의 설계강도를 결정하는 내진설계를 수행하여, 이러한 설계방식으로 타설계에서 결정되는 구조부재를 변경하지 않아도 연성파괴메카니즘을 확보할 수 있다는 것을 제시하였다.

Bendable 임베디드 전자모듈의 손상 메커니즘 (Failure Mechanism of Bendable Embedded Electronic Module Under Various Environment Conditions)

  • 조윤성;김아영;홍원식
    • Journal of Welding and Joining
    • /
    • 제31권5호
    • /
    • pp.59-63
    • /
    • 2013
  • A bendable electronic module has been developed for a mobile application by using a low-cost roll-to-roll manufacturing process. In flexible embedded electronic module, a thin silicon chip was embedded in a polymer-based encapsulating adhesive between flexible copper clad polyimide layers. To confirm reliability and durability of prototype bendable module, the following tests were conducted: Moisture sensitivity level, thermal shock test, high temperature & high humidity storage test, and pressure cooker tester. Those experiments to induce failure of the module due to temperature variations and moisture are the experiment to verify the reliability. Failure criterion was 20% increase in bump resistance from the initial value. The mechanism of the increase of the bump resistance was analyzed by using non-destructive X-ray analysis and scanning acoustic microscopy. During the pressure cooker test (PCT), delamination occurred at the various interfaces of the bendable embedded modules. To investigate the failure mechanism, moisture diffusion analysis was conducted to the pressure cooker's test. The hygroscopic characteristics of the encapsulating polymeric materials were experimentally determined. Analysis results have shown moisture saturation process of flexible module under high temperature/high humidity and high atmosphere conditions. Based on these results, stress factor and failure mechanism/mode of bendable embedded electronic module were obtained.

Priming of Defense-Related Genes Confers Root-Colonizing Bacilli-Elicited Induced Systemic Resistance in Pepper

  • Yang, Jung-Wook;Yu, Seung-Hun;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제25권4호
    • /
    • pp.389-399
    • /
    • 2009
  • A group of beneficial plant bacteria has been shown to increase crop growth referring to as plant growth-promoting rhizobacteria (PGPR). PGPR can decrease plant disease directly, through the production of antagonistic compounds, and indirectly, through the elicitation of a plant defense response termed induced systemic resistance (ISR). While the mechanism of PGPR-elicited ISR has been studied extensively in the model plant Arabidopsis, it is less well characterized in crop plants such as pepper. In an effort to better understand the mechanism of ISR in crop plants, we investigated the induction of ISR by Bacillus cereus strain BS107 against Xanthomonas axonopodis pv. vesicatoria in pepper leaves. We focused on the priming effect of B. cereus strain BS107 on plant defense genes as an ISR mechanism. Of ten known pepper defense genes that were previously reported to be involved in pathogen defense signaling, the expression of Capsicum annum pathogenesis-protein 4 and CaPR1 was systemically primed by the application of strain BS107 onto pepper roots confirming by quantitative-reverse transcriptase PCR. Our results provide novel genetic evidence of the priming effect of a rhizobacterium on the expression of pepper defense genes involved in ISR.

탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성 (Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers)

  • 봉하동;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘 (Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

조팝나무진딧물의 살충제 저항성 메카니즘에 관한 연구 (Insecticide Resistance Mechanism in the Spiraea Aphid, Aphis citricola (van der Goot))

  • 송승석;오홍규
    • 한국응용곤충학회지
    • /
    • 제34권2호
    • /
    • pp.89-94
    • /
    • 1995
  • ${LC}_{50}$에 의한 살충제 저항성 사험결과 지역에 따라 pirimicarb가 49~830배 phosphamidon이 31~536배, demeton S-methyl이 5~204배의 약제 저항성이 확인됨으로서 사과에 조팝나무진딧물이 포장에서 방제결과가 없는 난방제해충이 되었음을 알 수 있다. 이와 같이 약제에 따라, 지역에 따라 저항성차가 크게 나타나는 원인을 공시충을 채집한 과수원의 살충제 산포상황을 조사한 결과 저항성이 가장 높았던 예산과 이천-1의 개체군을 채집한 과수원에서는 살충제를 4회 이상산포하였고, 저항성이 가장 낮았던 개체별 esterase 활성을 활성지수별로 분포비율을 비교한 결과 활성지수가 원주는 낮은 곳에, 이천-1과 예산은 높은 곳에 집중적으로 분포하였으며, 효소의 활성지수로써 저항성도를 계산한 결과 원주는 44.5, 이천-1과 예산은 92.0이었고 기타의 개체군들은 약제산포회수가 적어 이 사이에 모두 분포하였음을 알 수 있어 포장에서 약제산포회수가 많을수록 효소의 활성이 높게 나타났고 저항성비도 높았다. 이들중 광주(조팝나무)를 S크론, 과천(사과)을 R크론으로 하여 AChE의 조해제에 대한 감수성을 조사한 결과 pirimicarb는 299.2배, phosphamidon은 186배나 저하되었다. 이로써 약제저항성이 높았던 크론에서 에스테라제의 활성이 높았고, AChE의 감수성이 저하되는 것으로 보아 조팝나무진딧물의 약제저항성기작에는 적오도 두가지 이상의 요인이 작용하고 있음이 확인되었다.

  • PDF

The Mechanism of Poly I:C-Induced Antiviral Activity in Peritoneal Macrophage

  • Pyo, Suh-Kenung
    • Archives of Pharmacal Research
    • /
    • 제17권2호
    • /
    • pp.93-99
    • /
    • 1994
  • Macrtophages play an important role in defense against virus infection by intrinsic resistance and by extrinsic resistance. Since interferon-induced enzymes which are 2'-5' oligoadenylate synthetase and p1/eIF-2 protein kinase have been shown to be involved in the inhibition of viral replication, I examined the mechanism by which poly I:C, an interferon inducer, exerts its antiviral effects in inflammatory macrophages infected with herpes simplex virus type 1 (HSV-1). The data presented here demonstrate that poly I:C-induced antiviral activity is partially due to the activation of 2'-5' pligoadenylate synthetase. The activation of 2'-5' oligoadenlate A synthetase by poly I:C is also at least mediated via the production of interferon-.betha.. Taken together, these data indicate that interferon-.betha. produced in response to poly I:C acts in an autocrine manner to activate the 2'-5' oligoadenylate synthetase and to induce resistance to HSV-1.

  • PDF

마이크로흘 드릴링 머신의 개발 및 절삭성능 평가 (Development of Micro-hole Drilling Machine and Assessment of cutting Performance)

  • 김민건;유병호
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

합금도금강판의 수적에 의한 표면층의 부식기구에 관한 연구 (A Study on the Corrosion Mechanism by the Moisture on the Surface Layer of the Alloys Coated Steel Sheet)

  • 김영호;김순경;전언찬
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.71-78
    • /
    • 2002
  • Since the early 1980's the use of zinc-aluminum alloy-coated steel sheet(Galvalume) for vehicular corrosion protection has increased drastically. It is consisting of 55%Al-43.4% Zn-1.6%Si. Galvalume has a good corrosion resistance, heat reflectivity and shiny appearance, which has a dendritic structure of alloy layer. It has a good corrosion resistance due to dendritic structure. But, this also has a weak point against moisture during long period of transportation as sheeted and or coiled without any relation of chromating on the surface of steel sheet or not because of high humidity and temperature. Here, We studied the corrosion mechanism by the moisture.

  • PDF