• Title/Summary/Keyword: resistance induction

Search Result 632, Processing Time 0.027 seconds

Interturn Fault Diagnosis Method of Induction Motor by Impedance Magnitude Comparison (임피던스 크기 비교를 통한 유도모터 턴쇼트 고장진단법)

  • Gu, Bon-Gwan;Park, Joon Sung;Kong, Tae-Sik;Kim, Taewon;Park, Taejoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.144-152
    • /
    • 2017
  • A motor model and off-line diagnosis method of the induction motor having an interturn fault(ITF) is studied. The proposed method is based on the magnitude comparison of the six impedance in the d-q plane. To prove the impedance unbalance, the induction motor model is presented with an ITF circuit loop with a fault resistance. Then, six impedance components in the stationary d-q plane are defined depending on the connected phase windings. Finding the maximum and minimum magnitude of the six impedance, the ITF and the faulty phase can be founded. To verify the proposed method, the experimental results with an induction motor having an ITF are shown.

Effects of Ball Milling on Sliding Wear Behavior of Ni-Al Intermetallics Coated on Mild Steel through Induction Heating Process (고주파 연소합성 코팅된 Ni-Al계 금속간화합물의 미끄럼 마모 특성에 미치는 볼 밀링의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.284-291
    • /
    • 2018
  • Ball-milling for reactant powders in advance and using an induction heating system for Ni-Al intermetallic coating process are known to enhance the reactivity of combustion synthesis. In this work, the effects of the charging weight ratio of ball to powder in ball-milling for reactant Ni-Al powders and the synthesizing temperature in induction heating on sliding wear behavior of the coating layers are investigated. Sliding wear behavior of the coating layers is examined against a tool steel using a pin-on-disc type sliding wear machine. As results, wear of the coating layer ball-milled without ball was severely worn out at the sliding speed of 2m/s, regardless of the synthesizing temperature in induction heating. However, the wear rate of the coating layers at the sliding speed was remarkably decreased with increasing the charging weight ratio of ball in ball-milling for reactant powders. This can be explained by the fact that the void in the coating layer is disappeared and the coating layer is densified by the ball-milling. The evidence showed that pitting damages were disappeared on the worn surface of ball-milled coating layer. Consequentially, the Ni-Al intermetallic coating layer could have better wear resistance at all sliding speed ranges with the ball-milling for reactant powders in advance.

Evaluation of Insulation Diagnostic Test Reliability for Stator Winding of High Voltage Induction Motor (고압유도전동기 절연특성시험의 신뢰도 평가)

  • Lee, Kwang-Ho;Kim, Hyun-Il;Kwak, Hee-Jin;Oh, Bong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1838-1841
    • /
    • 2004
  • This test was performed to assess the correlation between insulation diagnostic tests and breakdown voltage strength of the stator winding of 6.6kV class induction motor in insulation deterioration condition which have been in service for 5 years after being installed in 1998. The insulation diagnostic tests include resistance, polarization index(P.I), dissipation factor(${\triangle}tan{\delta}$), maximum partial discharges(Qmax) and AC breakdown test. we evaluated the correlation between insulation diagnostic test and AC breakdown test for stator winding of high voltage induction motor.

  • PDF

Maximum Efficiency Control of a Stator Flux-Oriented Induction Motor Drive (유도전동기 고정자자속 기준제어의 최대효율제어)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Maximum efficiency control scheme in a stator flux-oriented induction motor drive is proposed for minimizing input dc power. Flux level is decreased in steps for searching the minimum input dc power. In addition, Torque equation, slip angular frequency, and decoupling compensation current considering iron loss resistance is used. Simulation and experimental results verify the effectiveness of the proposed method.

Speed-Sensorless Vector Control of an Induction Motor Using Recursive Least Square Algorithm (RLS 기법을 이용한 유도전동기의 속도센서없는 벡터제어)

  • Park, Tae-Sik;Kim, Seong-Hwan;Yu, Ji-Yun;Park, Gwi-Tae;Kim, Nam-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.139-143
    • /
    • 1999
  • This paper is on realization of the speed-sensorless vector control of an induction motor using the RLS(Recursive Least Square) algorithm. The speed estimator is including the RLS algorithm and a rotor flux observer. The RLS algorithm has speed and rotor time constant as parameter vectors and rotor flux observer is designed to have robustness to stator resistance variation and through the IP(Integral and Proportional) speed controller stable performance is obtained for estimating rotor speed. Finally the total algorithm are realized in induction motor drive system and its effectiveness is verified.

  • PDF

A Novel MRAS Based Sensorless Speed Control of Induction Motor (새로운 MRAS에 의한 유도전동기의 센서리스 속도제어)

  • Jin, Dae-Won;Gwon, Yeong-An
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 1999
  • Speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of motor. Various control algorithms have been proposed for the elimination of speed senor. This paper investigates a novel speed sensorless control of induction motor. The proposed control strategy is based on MRAS(Model Reference Adaptive System) using state observer as a reference model for flux estimation. This algorithm may overcome several shortages of conventional MRAS: integrator problems, small EMF at low speed and relatively large sensitivity to resistance variation. The proposed algorithm is verified through simulation and experiment.

  • PDF

Vector Control of Induction Motor considering Iron Losses (철손을 고려한 유도전동기의 벡터제어)

  • Choi, Jong-Woo;Chung, Dae-Woong;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.285-288
    • /
    • 1996
  • Iron loss is a possible source of performance deterioration, especially for a torque regulation, in field oriented induction machine. In this paper, study on the model of an induction machine with iron losses, a flux estimation strategy, the design of direct and indirect field oriented controller, a precise torque regulation scheme and the determination of a core lost resistance are discussed. Simulation and experimental results are also included and show the effectiveness of the proposed analysis and the proposed control strategy.

  • PDF

TDFE Analysis of Single-Phase Induction Motors (유한요소법을 이용한 단상유도전동기의 시간차분해석)

  • Lee, Hyang-Beom;Hahn, Song-Yop;Park, Yoon-Ser;Jeong, Seong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.172-174
    • /
    • 1996
  • In this paper, the characteristics of single-phase induction motors is studied using TDFE(Time Domain Finite Element) analysis. The magnetic field equation from the Maxwell's equations is solved using 2-Dimensional TDFE method, and the circuit equations from the stator and rotor are solved simultaneously. The 3-D effects, which are the end-leakage reactance and the resistance of end-rings are considered in 2-D combined equations. The proposed method is applied to the commercial single-phase induction motor. The calculated waveforms of the currents shows a good agreement with the measured ones.

  • PDF

Sensorless Vector Control of Induction Motor Using Neural Networks (신경망을 이용한 유도전동기 센서리스 벡터제어)

  • Park, Seong-Wook;Choi, Jong-Woo;Kim, Heung-Geun;Seo, Bo-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.195-200
    • /
    • 2004
  • Many kinds of speed sensorless control system of induction motor had been developed. But it is difficult to implement at the real system because of complex algorithm and equations. This paper investigates a novel speed sensorless control of induction motor using neural networks. The proposed control strategy is based on neural networks using stator current and output of neural model based on state observer. The errors between the stator current and the output of neural model are back-propagated to adjust the rotor speed, so that adaptive state variable will coincide with the desired state variable. This algorithm may overcome several shortages of conventional model, such as integrator problems, small EMF at low speed and relatively large sensitivity of stator resistance variation. Also, this paper presents a newly developed optimal equation about the momentum constant and the learning rate. The proposed algorithms are verified through simulation.

Characteristic Analysis of Capacitor Run Single-Phase Induction Motor by Equivalent Circuit Method (등가회로법에 의한 커패시터 구동 단상 유도전동기의 특성해석)

  • Jwa, Chong-Keun;Kim, Ho-Min;Kim, Do-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.220-226
    • /
    • 2011
  • This paper proposes a straightforward method of analyzing the operation characteristics for the capacitor run single-phase induction motor from the traditional equivalent circuit based on the revolving field theory. The proposed method consists of five procedures as follows: mechanical loss segregation, iron loss segregation and calculation of the equivalent circuit parameters, recalculation of parameters of the main winding side, calculation of the auxiliary winding magnetizing reactance and effective turn ratio, and analyzing the operation characteristics for this motor. When the characteristics are analyzed, the segregated mechanical and iron losses are considered as a loss resistance across input terminals of the equivalent circuit for the analysis. The validity of the proposed method is verified from the comparison between the computed results and the experimental ones for the operation characteristics.