• Title/Summary/Keyword: resistance curve

Search Result 780, Processing Time 0.029 seconds

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

In Vitro Screening of Tannic Acid-based Eco-friendly Farming Material (notice no. 2-4-064) against Plant Pathogenic Bacteria (탄닌산을 함유한 친환경농자재(공시번호 2-4-064)의 식물병원세균 기내 억제효과)

  • Han, Kyu Suk;Ju, Ho-Jong;Hong, Jin Sung;Chung, Jong-Sang;Park, Duck Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.945-955
    • /
    • 2016
  • To date, chemical managements of plant bacterial diseases are complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. In this study, thus, we performed screening of eco-friendly farming material (notice no. 2-4-064) containing tannic acid as new antibacterial-activity against 7 plant bacterial pathogens: Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum (Rs), Acidovorax avenae subsp. citrulli (Aac), Xanthomonas cirti pv. citri (Xcc), Erwinia pyrifoliae (Ep), Clavibacter michiganensis subsp. michiganensis (Cmm), and Streptomyces scabies (Sc), Initial screening of antibacterial effects of eco-friendly farming material was performed using the paper disk diffusion method and co-cultivation in broth culture. Tannic acid based eco-friendly farming material showed inhibitory effect against Pcc, Rs, Aac, Xcc, Cmm, and Ss, whereas it did not show inhibition zone against Ep. However, when it tested by co-cultivation in broth culture, it showed strong inhibition effect against all pathogens that declined growth curve compared to bacterial pathogen only. Interestingly, when we observed morphological changes on those pathogens by SEM, cell morphologies of 7 pathogens were slightly changed that seem to be malfunction in their cell envelope.

A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire (도로터널 화재시 연기의 전파특성과 구조체에 미치는 영향에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Oh, Byung-Chil;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.289-300
    • /
    • 2013
  • This study numerically considered the characteristic of smoke movement and the effect of hot smoke gas on tunnel wall surface temperature during road tunnel fire under boundary condition of fire growth curve that is applied to fire analysis in road tunnels. The maximum heat release rate were 20 MW and 100 MW and tunnel air velocities were 2.5 m/s and velocity induced by thermal buoyancy respectively, also the cooling effect of tunnel wall was considered. As results, when tunnel air velocity was constant at 2.5 m/s during tunnel fire, due to the cooling effect of tunnel wall, the smoke layer was rapidly descent after some distance and it flowed the same patterns at the downstream. When heat release rate was 100 MW (and jet fan was not installed), the maximum temperature of tunnel wall surface has risen up to $615^{\circ}C$. The heat transfer coefficient of tunnel wall surface was varied from 13 to $23W/m^2^{\circ}C$ approximately.

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns without Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 비재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.465-471
    • /
    • 2009
  • To prevent the explosive spalling of the high strength concrete and control the rise of temperature in the steel rebar during fire, a fiber cocktail method has been proposed simultaneously with the use of polypropylene and steel fiber. After applying the fiber cocktail (polypropylene and steel fibers) into the mixture of high strength concrete with a compressive strength of between 40 and 100 MPa and evaluating the thermal properties at elevated temperatures, the fire test was carried out on structural members in order to evaluate the fire resistance performance. Two column specimens were exposed to the fire without loading for 180 minutes based on the standard curve of ISO-834. No explosive spalling has been observed and the original color of specimen surface was changed to light pinkish grey. The inner temperature of concrete dropped rapidly starting from 60mm deep. After 60 minutes of exposure to the fire, the temperature gradient of fiber cocktail reinforced high strength concrete was measured as 2.2oC/mm, which is approximately 5 times less than that of normal concrete. The final temperatures of steel rebar after 180 minutes of fire test resulted in 488.0oC for corner rebar, 350.9oC for center rebar, and 419.5oC for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 137.1oC The tendency of temperature rise in concrete and steel rebar changed between 100oC and 150oC The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

Analytical Evaluation of Behavior of Precast PSC Box Curve Bridge Based on Design Variables (프리캐스트 PSC 중공 박스 곡선교의 설계변수에 관한 해석적 거동 평가)

  • Kim, Sung-Bae;Kim, Sung-Jae;Park, Jeong-Cheon;Uhm, Ki-Ha;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.267-275
    • /
    • 2014
  • Recently, the construction of curved bridge has increased, thus researchers perform the analytic studies on PSC curved bridge. However, the grid analysis method that are mostly used in the construction industry is not adequate to acquire the precise behavior evaluation of curved PSC briges. Therefore, the precise finite element analysis considering the effective variables were performed to establish the basis for the design method of curved PSC bridge by using 3D elements and bar element. The evaluated variables in this analysis were the number of girders, loading point, section figure, change of prestressing force. The results show the load carrying capacity of the 3 girder type bridge is 200% of that of the 2 girder type, and that applying load on outer girder makes the load resistance capacity and the deflection deviation of 2 girders smaller. The structural capacity of the bridge is improved when the section size is increased, but the efficiency of it is not sufficient enough compare to that of the change of prestressing forces. The change of prestressing forces shows that the camber and the load carrying capacity are linearly increased as PS force is increased. Moreover, when the PS force applied on outer girder is increased than that of inner girder, the deviation of deflection the girders decreases, thereby the stability of the bridge is enhanced.

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Electrochemical Characterization of Hybrid Semiconductor-Based Dye-Sensitized Solar Cells (혼성반도체로 제조된 염료감응형 태양전지의 전기화학적 특성)

  • Lee, Sung-Kyu;Jeong, Eui-Gyung;Im, Ji-Sun;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.175-180
    • /
    • 2011
  • In this study, the $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors were prepared by mixing $TiO_{2}$ and $V_{2}O_{5}$, and a subsequent smash process to reduce the recombination of electron and improve the efficiency of solar cells. Dye-sensitized solar cells were constructed using the resultant hybrid semiconductor, and their electrochemical properties were also investigated. The photocurrent-voltage curve obtained with the cells indicated a significant increase in the efficiency from 2.9 to 5.7% by the factor of 2 compared to the result obtained only with $TiO_{2}$. It is believed that the introduction of $V_{2}O_{5}$ effectively transport electrons in the $TiO_{2}$ conduction band to FTO glass and suppress recombination with the dye and/or the electrolyte, thus yielding an efficient performance of the dye sensitized solar cell. The impedance values also indicated a decrease of resistance in the interface of $TiO_{2}$/dye/electrolyte supporting the constructive contributions of the smashed $TiO_{2}/V_{2}O_{5}$ hybrid semiconductors for the efficiency.

A Study on The Effects of Three Different Carbon Catalysts on Performance of Vanadium Redox Flow Battery (세가지 다른 형태의 탄소촉매 적용에 따른 바나듐레독스흐름전지 성능 변화에 관한 연구)

  • Chu, Cheounho;Jeong, Sanghyun;Jeong, Jooyoung;Chun, Seung-Kyu;Lee, Jinwoo;Kwon, Yongchai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, we carry out a study on how to improve performance of vanadium redox flow battery (VRFB) through promoting reaction rate of rate determining vanadium reaction ($[VO]^{2+}/[VO_2]^+$). In order to do that, three different carbons like Vulcan (XC-72), CMK3 and MSU-F-C are adopted as the catalysts, while their catalytic activity and reaction reversibility are evaluated using half-cell tests. Their topological images are also measured by TEM. For estimation of the VRFB performance, multiple charge-discharge curves of VRFBs including the catalysts are measured by single cell tests. As a result of that, MSU-F-C shows relatively excellent catalytic activity and reaction reversibility as well as large surface area compared to those of Vulcan (XC-72) and CMK3. Also, in terms of the performance of VRFBs including the catalysts, VRFB including MSU-F-C indicates (i) low charging/discharging overpotentials and low internal resistance, (ii) high charge/discharge capacities and (iii) high energy efficiency. These VRFB performance data are well agreed with results on catalytic activity and reaction reversibility. The reason that MSU-F-C induces superior VRFB performances is attributed to (i) its large surface area and (ii) its hydrophilic surface functional groups that mainly consist of hydroxyl bonds that are supposed to play active surface site role for facilitaing $[VO]^{2+}/[VO_2]^+$ redox reaction. Based on the above results, it is found that adoption of MSU-F-C as catalyst for VRFB results in improvement in VRFB performance by promoting the languid $[VO]^{2+}/[VO_2]^+$ redox reaction.

In Vitro and In Vivo Effects of Piceatannol and Resveratrol on Glucose Control and TLR4-NF-κB Pathway (피세아테놀과 레스베라트롤의 혈당조절 및 TLR4-NF-κB 경로 조절 작용)

  • Lee, Hee Jae;Lee, Hae-Jeung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV), which is a polyphenol known to extend lifespan by stimulating sirtuins. The aim of this study was to investigate the effects of PIC and RSV on the toll-like receptor 4 (TLR4)-nuclear factor kappa B ($NF-{\kappa}B$) pathway in mouse hepatocytes and an obese/diabetic KK/HlJ mouse model. AML12 mouse hepatocytes in the absence or presence of palmitic acids (PA) were treated with PIC ($50{\mu}M$) or RSV ($50{\mu}M$). Male KK/HlJ mice at 20 weeks of age were divided into three subgroups as follows: 1) obese and diabetic control (KK), 2) KK_PIC, and 3) KK_RSV. PIC and RSV were administered orally at a dose of 10 mg/kg/d for 4 weeks. Four weeks of PIC and RSV treatment did not affect body weight or food intake in KK mice. Serum fasting blood glucose was significantly reduced in KK_PIC, and 2 h oral glucose tolerance test area under the curve was significantly reduced by PIC and RSV treatment in KK mice. PIC tended to improve homeostasis model assessment of the insulin resistance index (HOMA-IR) and HOMA beta-cells in diabetic KK mice. TLR4 and $NF-{\kappa}B$ were down-regulated by PIC and RSV treatments in hepatocytes in the absence or presence of PA. Insulin receptor, AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma, nucleotide oligomerization domain-like receptor family pyrin domain-containing 3, interleukin-1, and $NF-{\kappa}B$ were altered in PIC-treated livers. Collectively, PIC and RSV inhibited the $TLR4-NF-{\kappa}B$ pathway, and PIC seems to be more effective than RSV in the regulation of analyzed targets, which are involved in insulin signaling and inflammation in vivo.

Variation of Soil Properties by Permeating Injection of Chemical Grouts (약액(藥液)의 침투주입(浸透注入)에 의한 토질성상변화(土質性狀變化))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 1982
  • Variation of soil properties is studied by permeating injection of chemical grouts, such as cement type, water-glass type and acrylamide type, to the same soil samples with different densities. Moreover, injection tests using specially prepared equipments of 1.0 shot system and 1. 5 shot system are attempted to investigate permeating injection effects in highly compacted soil and in the presence of ground water. The main factor which causes the improvement of cut-off effect and shearing strength is the cohesion of soil. The strength in the loose state is fundamentally governed by the membrane cohesion, meanwhile, in the loose state is governed by the structural cohesion. Injection effects under the ground water flow is considerably decreased, and effective gelling ratio of approximate 45~80% is observed by variation of velocity and gel time, besides grading of injection materials has high relation with permeation and traveling length but has little relation with effective gelling ratio. Permeating injection effects, such as gelling scope, gelling strength in highly compaoted soil conditions can be confirmed by penetration resistance diagram and iso-strength curve.

  • PDF