• Title/Summary/Keyword: resilient

Search Result 1,005, Processing Time 0.024 seconds

A Spatial Projection of Demand for Green Infrastructure and Its Application to GeoDesign - Evidence-Based Design for Urban Resilience - (융합도시모델링을 통한 그린인프라 수요 예측 및 지오디자인 적용 - 도시 레질리언스를 위한 근거 기반 디자인 -)

  • Kwak, Yoonshin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.30-43
    • /
    • 2023
  • Green infrastructure(GI) is considered a key strategy in establishing sustainable communities. However, research on GI from the perspective of urban system dynamics and resilience lacks depth, as does its integration with physical design. This research addresses two primary causes. First, there is a gap in methods between existing GI planning, which considers static variables, and urban modeling research, which addresses dynamic variables. Second, there is a gap in information between landscape design and urban modeling research. To address these issues, this study proposes an integrated modeling approach in consideration of design decision-making. By combining the LEAM model and MCDA model, this study evaluates the relationship between GI services and socioeconomic growth, while spatially forecasting the geographies of GI demand in 2050. The resulting information reveals a potential degradation in ecosystem services over the region due to Chicago's sub-urbanization. This indicates that there would be a spatial shift in GI demand, emphasizing the need for comprehensive, dynamic GI strategies. This study further discusses the applications of evidence-based design in a studio environment. This study aims to contribute to the GeoDesign literature in terms of the creation of a more resilient urban environment by facilitating efficient evidence-based decision-making.

Sensitivity Analysis on Flood Level Changes by Offline Storage Creation Based on Unsteady Flow Modeling (부정류 모의 기반 오프라인 저류지 조성에 따른 홍수위 변화 민감도 분석)

  • Eun-kyung Jang;Un Ji;Sanghyeok Kim;Jiwon Ryu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.217-225
    • /
    • 2023
  • This study analyzed the effect of flood level reduction in the case of creating and operating offline storage for the Jangdong district, which can be used as a flood buffer space for the Geumgang River, through one-dimensional unsteady flow numerical simulation. In particular, the sensitivity analysis of changes in the height and width (length) of transverse weirs on flood level changes was performed to provide quantitative information necessary for flood control facility (embankment) design. As a result of analyzing the flood control effect of the offline storage based on the peak flood discharge and level, spatially, the flood control effect at the planned flood buffer space site and the downstream end was confirmed, and it was confirmed that the flood reduction effect at the downstream occurred the most. By design conditions of the transverse overflow weir, the greatest flood reduction effect was found under the condition that the overflow weir height based on the 50-year frequency flood level and the transverse overflow weir width (length) of 125 m were considered. The effect of delaying the time to reach the maximum flood due to the operation of the offline storage site was also presented based on unsteady flow modeling.

Development of Forest Garden Model Based on Structural Characteristics of Forest Community in Korea (우리나라 산림군집의 경관구조 특성기반 숲정원 모델의 개발)

  • Seung-Hoon Chun;Yoon-Jung Cha;Sang-Gil Park;Jun-Gyu Bae;Kyung-Mee Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.237-249
    • /
    • 2023
  • This study was carried to establish a new landscape-oriented gardening model based on climate, vegetation, and forest landscape characteristics. In addition, innovative forest garden models were suggested through an integrated approach to the ecological characteristics of forest vegetation communities and existing garden planting types. For the study, the key landscape elements that make up the main forest vegetation community were identified. And the vertical layers and horizontal distribution patterns of the community structure were typified by diagnostic species and their growth forms & habits such as dominant species, character species, and differential species, and degree of dominance-sociability. Based on this, a standardized vegetation structure and formation was developed by stratifying the landscape into main features, minor features, and detailed features according to visual dominant elements. Also, the applicability of the forest garden model was examined by applying the concept of borrowing landscape to representative deciduous broadleaf forests in the temperate northern region of Korea. Additionally, an integrated forest garden models based on the conceptual definition and typology of forest gardens, and a strategic approach to forest vegetation were proposed

Analysis of Channel Changes in Mountain Streams Due to Typhoon Hinnamnor Flood - A Case Study on Shingwangcheon and Naengcheon Streams in Pohang - (태풍 힌남노 홍수로 인한 산지 중소하천의 하도 변화 분석 - 포항 신광천 및 냉천을 사례로 -)

  • Chanjoo Lee;Seong Gi An;Eun-Kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.97-106
    • /
    • 2023
  • This study analyzed morphological changes in the Singwangcheon and Naengcheon streams in Pohang caused by flooding due to Typhoon Hinnamnor. Analysis of the changes in river channel area from the past to recent times using aerial photos and drone-taken images showed that the river width had gradually decreased since the 1960s. However, after the flood, the river width increased again. Changes in the river cross-section before and after the flood show that a large amount of coarse sediment was deposited inside the river bend while the outer bank was eroded. The water levels calculated using HEC-RAS for the pre-flood cross-section based on the flood frequency discharges and estimated discharge from Oer Reservoir were significantly lower than the observed water level, which means that the cross-sectional change was not considered. The results of this study suggest that it is necessary to consider cross-sectional changes due to sediment transport when estimating the flood level of small and medium-sized mountain streams, and it is needed to investigate the geomorphic changes after floods.

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.

Ecological Characteristics and Their Implications for the Conservation in the Taehwagang River Estuarine Wetland, Ulsan, South Korea (울산 태화강하구습지의 생태적 특성 및 보전을 위한 제안)

  • Pyoungbeom Kim;Yeonhui Jang;Yeounsu Chu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.171-183
    • /
    • 2023
  • Estuarine wetlands, which form a distinctive brackish water zone, serve as important habitats for organisms that have adapted to and thrive in this environment. Nonetheless, excessive development and utilization result in artificial disruptions that alter the distinctive functions and attributes of estuarine wetlands. To collect the basic data for the conservation of estuarine wetlands with excellent ecosystems, we investigated the vegetation distribution characteristics and biota status of the Taehwagang River Estuarine Wetland. Data from vegetation surveys have shown that 25 plant communities of six physiognomic vegetation types, including willow vegetation, lotic and lentic herbaceous vegetation, floating/submerged vegetation. In the upper reaches, where topographical diversity was high, various types of wetland vegetation were distributed. In terms of biodiversity, a total of 696 species, including 7 endangered wildlife species, were identified. Due to good ecological connectivity, tidal rivers are formed, brackish water species including various functional groups are distributed around this section. The inhabitation of various water birds, such as diving and dabbler ducks, were confirmed according to the aquatic environment of each river section. The collection of ecological information of the Taehwagang River Estuarine Wetland can be used as a framework for establishing the basis for conservation and management of the estuarine ecosystem and support policy establishment.

Prediction of Carbon Accumulation within Semi-Mangrove Ecosystems Using Remote Sensing and Artificial Intelligence Modeling in Jeju Island, South Korea (원격탐사와 인공지능 모델링을 활용한 제주도 지역의 준맹그로브 탄소 축적량 예측)

  • Cheolho Lee;Jongsung Lee;Chaebin Kim;Yeounsu Chu;Bora Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.161-170
    • /
    • 2023
  • We attempted to estimate the carbon accumulation of Hibiscus hamabo and Paliurus ramosissimus, semimangroves native to Jeju Island, by remote sensing and to build an artificial intelligence model that predicts its spatial variation with climatic factors. The aboveground carbon accumulation of semi-mangroves was estimated from the aboveground biomass density (AGBD) provided by the Global Ecosystem Dynamics Investigation (GEDI) lidar upscaled using the normalized difference vegetation index (NDVI) extracted from Sentinel-2 images. In Jeju Island, carbon accumulation per unit area was 16.6 t C/ha for H. hamabo and 21.1 t C/ha for P. ramosissimus. Total carbon accumulation of semi-mangroves was estimated at 11.5 t C on the entire coast of Jeju Island. Random forest analysis was applied to predict carbon accumulation in semi-mangroves according to environmental factors. The deviation of aboveground biomass compared to the distribution area of semi-mangrove forests in Jeju Island was calculated to analyze spatial variation of biomass. The main environmental factors affecting this deviation were the precipitation of the wettest month, the maximum temperature of the warmest month, isothermality, and the mean temperature of the wettest quarter. The carbon accumulation of semi-mangroves predicted by random forest analysis in Jeju Island showed spatial variation in the range of 12.0 t C/ha - 27.6 t C/ha. The remote sensing estimation method and the artificial intelligence prediction method of carbon accumulation in this study can be used as basic data and techniques needed for the conservation and creation of mangroves as carbon sink on the Korean Peninsula.

Real-Time Flood Forecasting by Using a Measured Data Based Nomograph for Small Streams (계측자료 기반 Nomograph를 이용한 실시간 소하천 홍수량 산정 연구)

  • Tae Sung Cheong;Changwon Choi;Sung Je Yei;Kang Min Koo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.116-124
    • /
    • 2023
  • As the flood damage on small streams increase due to the increase in frequency of extreme climate events, the need to measure hydraulic data of them has increased for disaster risk management. National Disaster Management Institute, Ministry of Interior and Safety develops CADMT, a CCTV-based automatic discharge measurement technology, and operates pilot small streams to verify its performance and develop disaster risk management technology. The research selects two small streams such as the Neungmac and the Jungsunpil streams to develop the Nomograph by using the 4-Parameter Logistic method using only the observed rainfall data from the Automatic Weather System operated by the Korea Meteorological Agency closest to the small streams and discharge data collected by using the CADMT. To evaluate developed Nomograph, the research forecasts floods discharges in each small stream and compares the result with the observed discharges. As a result of the evaluations, the forecasted value is found to represent the observed value well, so if more accurate observed data are collected and the Nomograph based on it is developed in the future, the high-accuracy flood prediction and warning will be possible.

Development of a Method for Tracking Sandbar Formation by Weir-Gate Opening Using Multispectral Satellite Imagery in the Geumgang River, South Korea (금강에서 다분광 위성영상을 이용한 보 운영에 따른 모래톱 형성 추적 방법의 개발)

  • Cheolho Lee;Kang-Hyun Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.135-142
    • /
    • 2023
  • A various technology of remote sensing and image analysis are applied to study landscape changes and their influencing factors in stream corridors. We developed a method to detect landscape changes over time by calculating the optical index using multispectral images taken from satellites at various time points, calculating the threshold to delineate the boundaries of water bodies, and creating binarized maps into land and water areas. This method was applied to the upstream reach of the weirs in the Geumgang River to track changes in the sandbar formed by the opening of the weir gate. First, we collected multispectral images with a resolution of 10 m × 10 m taken from the Sentinel-2 satellite at various times before and after the opening of the dam in the Geumgang River. The normalized difference water index (NDWI) was calculated using the green light and near-infrared bands from the collected images. The Otsu's threshold of NDWI calculated to delineate the boundary of the water body ranged from -0.0573 to 0.1367. The boundary of the water area determined by remote sensing matched the boundary in the actual image. A map binarized into water and land areas was created using NDWI and the Otsu's threshold. According to these results of the developed method, it was estimated that a total of 379.7 ha of new sandbar was formed by opening the three weir floodgates from 2017 to 2021 in the longitudinal range from Baekje Weir to Daecheong Dam on the Geumgang River. The landscape detection method developed in this study is evaluated as a useful method that can obtain objective results with few resources over a wide spatial and temporal range.

Assessment of Physical Habitats Characteristics in Naeseongcheon Basin Streams, Korea (내성천 유역 하천의 물리 서식지 특성 평가)

  • Ki Heung Kim;Heareyn Jung;Il Hong;Hong Koo Yeo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.143-160
    • /
    • 2023
  • This study applied the stream physical habitat assessment system to obtain basic information for river restoration and watershed management in high-gradient and mid-gradient streams in the Naeseongcheon basin. The total length of high-gradient and mid-gradient streams in the Naeseongcheon basin is about 273 km, and as a result of the assessment, it was analyzed that suboptimal reach was about 8.2 km, normal reach was 180.3 km, and marginal reach was 84.7 km. In addition, the physical habitat quality of high-gradient streams was analyzed to be normal condition with an average of 106 points (53%), and in particular, the score of channel/hydraulic category, which is the most important for the habitat of aquatic animals, was analyzed to be normal, close to the limit, with an average of 54 points (45%). The physical habitat quality of mid-gradient streams was found to be in normal condition with an average of 90 points (45%), and the score of channel/hydraulic category was in marginal condition with an average of 39 points (32%). Overall, among 165 reaches of high-gradient and mid-gradient streams in the Naeseongcheon basin, 4 reaches (3%) were evaluated as suboptimal, 119 reaches (72%) were normal, and 42 reaches (25%) were considered marginal. These results showed that the physical habitat of Naeseongcheon was significantly disturbed. Disturbance of stream physical habitat in the Naeseongcheon basin occured due to farmland around stream, urbanization, reservoir construction, and river maintenance.