DOI QR코드

DOI QR Code

Ecological Characteristics and Their Implications for the Conservation in the Taehwagang River Estuarine Wetland, Ulsan, South Korea

울산 태화강하구습지의 생태적 특성 및 보전을 위한 제안

  • Pyoungbeom Kim (Wetlands Research Team, National Institute of Ecology) ;
  • Yeonhui Jang (Aquatic Ecosystem Research Team, National Institute of Ecology) ;
  • Yeounsu Chu (Wetlands Research Team, National Institute of Ecology)
  • Received : 2023.11.08
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

Estuarine wetlands, which form a distinctive brackish water zone, serve as important habitats for organisms that have adapted to and thrive in this environment. Nonetheless, excessive development and utilization result in artificial disruptions that alter the distinctive functions and attributes of estuarine wetlands. To collect the basic data for the conservation of estuarine wetlands with excellent ecosystems, we investigated the vegetation distribution characteristics and biota status of the Taehwagang River Estuarine Wetland. Data from vegetation surveys have shown that 25 plant communities of six physiognomic vegetation types, including willow vegetation, lotic and lentic herbaceous vegetation, floating/submerged vegetation. In the upper reaches, where topographical diversity was high, various types of wetland vegetation were distributed. In terms of biodiversity, a total of 696 species, including 7 endangered wildlife species, were identified. Due to good ecological connectivity, tidal rivers are formed, brackish water species including various functional groups are distributed around this section. The inhabitation of various water birds, such as diving and dabbler ducks, were confirmed according to the aquatic environment of each river section. The collection of ecological information of the Taehwagang River Estuarine Wetland can be used as a framework for establishing the basis for conservation and management of the estuarine ecosystem and support policy establishment.

하구습지는 독특한 기수역이 형성되며 이러한 환경에 적응하여 살아가는 생물에게 중요한 서식처로 기능을 수행한다. 그러나 과도한 개발과 이용에 따른 인위적 간섭으로 하구습지 고유의 기능 및 특성을 변화시킨다. 본 연구는 생태계가 우수한 하구습지 보전을 위한 기초자료를 수집하기 위해서, 태화강하구습지를 대상으로 식생 분포 특성 및 생물상 현황을 조사하였다. 연목림 식생, 정수 및 유수역 다년생 초본식생, 부유·침수식생 등 6개 상관식생형의 25개 식물군락이 확인되었다. 지형다양성이 높은 상류부에서 다양한 유형의 습지식생이 분포하고 있었다. 생물종 다양성은 멸종위기 야생생물 7종 포함 총 696종이 확인되었다. 생태적 연결성이 양호하여 감조하천이 형성되는 구간을 중심으로 다양한 기능군을 가지는 기수성 생물종이 분포하며, 하천 구간별 수환경에 따라서 잠수 및 수면성오리류 등 다양한 수조류의 서식을 확인하였다. 태화강하구습지의 생태정보의 수집은 하구 생태계의 보전·관리 기반을 마련하고 정책 수립을 지원하는 데 기초자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 연구는 국립생태원 "하구 생태계 조사('23) NIE-법정연구-2023-20)"의 연구비 지원에 의해 수행되었으며, 조사에 참여하신 모든 분들과 관계자분들께 감사드립니다.

References

  1. Baek, C.R., Yi, J.H., Oh, T.H., Yeom, K.S., Han, I.H., Jung, J.W., and Cho, S.R. 2010. Investigation of habitat preferences, according to changed of water level in ducks. Kor. J. Orni. 17(3): 205-216. (in Korean)
  2. Braun-Blanquet, J. 1965. Plant sociology: the study of plant communities. Transl. rev. and ed. by C.D. Fuller & H.S. Conard. Hafner, London, p. 439
  3. Carlson Mazur, M.L., Kowalski, K.P., and Galbraith, D. 2014. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone. Aquatic Invasions 9(1): 1-19. https://doi.org/10.3391/ai.2014.9.1.01
  4. Chabrerie, O., Poudevigne, I., Bureau, F., Vinceslas-Akpa, M., Nebbache, S., Aubert, M., Bourcier, A., and Alard, D. 2001. Biodiversity and ecosystem functions in wetlands: a case study in the estuary of the Seine river, France. Estuaries 24: 1088-1096. https://doi.org/10.2307/1353020
  5. Chu, Y., Cho, K.J., and Lim, J. 2022. Characteristics of Vegetation and Biota in the Gahwacheon Estuarine Wetland, Sacheon, South Korea: Proposals for the Ecosystem Conservation. Ecology and Resilient Infrastructure 9(4): 237-246. (in Korean) https://doi.org/10.17820/ERI.2022.9.4.237
  6. Costanza, R., Kemp, W.M., and Boynton, W.R. 1997. Predictability, scale and biodiversity in coastal and estuarine ecosystems: implications for management. Ambio 22: 88-96.
  7. Douglas, E.J., Bulmer, R.H., MacDonald, I.T., and Lohrer, A.M. 2022. Estuaries as coastal reactors: importance of shallow seafloor habitats for primary productivity and nutrient transformation, and impacts of sea level rise. New Zealand Journal of Marine and Freshwater Research 56(3): 553-569. https://doi.org/10.1080/00288330.2022.2107027
  8. Duarte, C.M., Borja, A., Carstensen, J., Elliott, M., Krause-Jensen, D., and Marba, N. 2015. Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries and Coasts 38: 1202-1212. https://doi.org/10.1007/s12237-013-9750-9
  9. EAAFP. 2023. East Asian-Australasian Flyway Partnership. https://www.eaaflyway.net. Accessed 01 September 2023.
  10. Greening, H., Janicki, A., Sherwood, E.T., Pribble, R., and Johansson, J.O.R. 2014. Ecosystem responses to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA. Estuarine, Coastal and Shelf Science 151: A1-A16. https://doi.org/10.1016/j.ecss.2014.10.003
  11. Kim, H., Yoon, S.O., and Hwang, S.G. 2016. The Change of Vegetation Environment since middle-late Holocene in the lower reaches of Taehwa River, Taehwa-dong, Ulsan-si, Korea. Journal of the Korean Geomorphological Associtation 23(2): 1-13. (in Korean) https://doi.org/10.16968/JKGA.23.1.5
  12. Kim, J.D., Yang, H., Cho, Y.C., Kim, Y.C., and Cho, M.Y. 2010. Monitoring of pathogens and characteristics of fish community in the Taewha River. Korean Journal of Environmental Biology 28(3): 143-149. (in Korean)
  13. Kim, S.H., Kim, H.T., and Woo, H.S. 2011. Reviving the River of Life: Interactions between Rivers, Wildlife, and Humans. Water for future 44(5): 23-31. (in Korean)
  14. KMA. 2022. Open MET Data Portal. https://data.kma.go.kr. Accessed 01 September 2023. (in Korean)
  15. Lee, J.N. 2005. Winter bird monitoring of lower Taehwa river in the Ulsan city. Journal of Wetlands Research 7(4): 81-88. (in Korean)
  16. Lee, S., Chu, Y., and Oh, J.S. 2023. Environmental Characteristics in Taehwa Estuary Zone and Its Sustainable Management. Journal of the Association of Korean Photo-Geographers 33(1): 19-31. (in Korean)
  17. Lee, S.U. 2009. Ulsan's lifeline-Finding Taehwagang River Station. River and Culture 5(1): 71-78. (in Korean)
  18. Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., Kidwell, S.M., Kirby, M.X., Peterson, C.H., and Jackson, J.B. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science (New York, N.Y.), 312(5781): 1806-1809. https://doi.org/10.1126/science.1128035
  19. NIE. 2020. Inland Wetland Survey Guidelines. National Institute of Ecology, Seocheon, South Korea. (in Korean)
  20. NIE. 2022. Survey on Estuarine Ecosystem ('22). National Institute of Ecology, Seocheon, South Korea. (in Korean)
  21. NIE. 2023. National Institute of Ecology. https://nie.re.kr. Accessed 01 September 2023. (in Korean)
  22. NIER. 2017. The Intensive Survey on Estuarine Ecosystem (2017). National Institute of Environmental Research, Incheon, South Korea. (in Korean)
  23. O'Brien, A., Townsend, K., Hale, R., Sharley, D., and Pettigrove, V. 2016. How is ecosystem health defined and measured? A critical review of freshwater and estuarine studies. Ecological Indicators 69(2016): 722-729. https://doi.org/10.1016/j.ecolind.2016.05.004
  24. Park, H.J., Nam, B.E., Hong, M.G., and Kim, J.G. 2018. Slope and soil nutrients can explain the distribution of Phragmites australis and Phragmites japonica in riparian wetlands. River Research and Applications 34(9): 1229-1233. https://doi.org/10.1002/rra.3350
  25. Sawyer, A.H., Shi, F., Kirby, J.T., and Michael, H.A. 2013. Dynamic response of surface water-groundwater exchange to currents, tides, and waves in a shallow estuary. Journal of Geophysical Research: Oceans 118(4): 1749-1758. https://doi.org/10.1002/jgrc.20154
  26. van der Linden, P., Patricio, J., Marchini, A., Cid, N., Neto, J.M., and Marques, J.C. 2012. A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecological Indicators 20(2012): 121-133. https://doi.org/10.1016/j.ecolind.2012.02.004
  27. Wolanski, E. and Elliott, M. 2015. Estuarine Ecohydrology: An Introduction. 2nd edition. Elsevier Science, Amsterdam, Oxford.
  28. Wolowicz, M., Sokolowski, A., and Lasota, R. 2007. Estuaries - a biological point of view. Oceanological and Hydrobiological Studies 36(3): 113-130. https://doi.org/10.2478/v10009-007-0025-2
  29. Worm, B., Barbier, E.B., Beaumont, N., Duffy, J.E., Folke, C., Halpern, B.S., ... and Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science 314(5800): 787-790. https://doi.org/10.1126/science.1132294
  30. Zu Ermgassen, P.S., Spalding, M.D., Grizzle, R.E., and Brumbaugh, R.D. 2013. Quantifying the loss of a marine ecosystem service: filtration by the eastern oyster in US estuaries. Estuaries and coasts 36: 36-43. https://doi.org/10.1007/s12237-012-9559-y