• Title/Summary/Keyword: residually ${\chi}$-group

Search Result 2, Processing Time 0.016 seconds

2-ENGELIZER SUBGROUP OF A 2-ENGEL TRANSITIVE GROUPS

  • Moghaddam, Mohammad Reza R.;Rostamyari, Mohammad Amin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.657-665
    • /
    • 2016
  • A general notion of ${\chi}$-transitive groups was introduced by C. Delizia et al. in [6], where ${\chi}$ is a class of groups. In [5], Ciobanu, Fine and Rosenberger studied the relationship among the notions of conjugately separated abelian, commutative transitive and fully residually ${\chi}$-groups. In this article we study the concept of 2-Engel transitive groups and among other results, its relationship with conjugately separated 2-Engel and fully residually ${\chi}$-groups are established. We also introduce the notion of 2-Engelizer of the element x in G and denote the set of all 2-Engelizers in G by $E^2(G)$. Then we construct the possible values of ${\mid}E^2(G){\mid}$.

ON THE S1-EULER CHARACTERISTIC OF THE SPACE WITH A CIRCLE ACTION ii

  • HAN, SNAG-EON
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • The $S^1$-Eule characteristics of X is defined by $\bar{\chi}_{S^1}(X)\;{\in}\;HH_1(ZG)$, where G is the fundamental group of connected finite $S^1$-compact manifold or connected finite $S^1$-finite complex X and $HH_1$ is the first Hochsch ild homology group functor. The purpose of this paper is to find several cases which the $S^1$-Euler characteristic has a homotopic invariant.

  • PDF