• Title/Summary/Keyword: residual velocity

Search Result 392, Processing Time 0.02 seconds

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

An Analysis on the Residual Stress of Subsurface Zone due to Rolling Contact (회전접촉에 의해 발생하는 Subsurface Zone의 잔류응력에 관한 해석)

  • Gang, Gye-Myeong;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.58-64
    • /
    • 1993
  • The degree of work hardening in the subsurface zones varied with the experimental conditions under the rolling contact fatigue wear test of high carbon Cr-Ti alloy steel was evaluated by the distribution of residual stresses. Surface residual stresses before the test did not affect the wear property. Surface residual stresses after the test decreased by the increase of contact stress and running. velocity. but the maximum compressive residual stress and its depth of saturation in the subsurface zone increased. The relationship between these experimental results and the distribution of the theoritical shear stress was also discussed.

  • PDF

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

Dispersion Managed Optical Transmission Links with an Artificial Distribution of the SMF Length and Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Dispersion management (DM), optical phase conjugation (OPC), and the combination of DM and OPC are promising techniques to compensate for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. The system performance improvement in DM links combined with OPC has been reported; however, the fixed residual dispersion per span (RDPS) usually used in these links restricts the flexibility of link configuration. Thus, in this paper, a flexible optical link configuration with artificially distributed single-mode fiber (SMF) lengths and RDPS in the combination of DM and OPC is proposed. Simulation results show that the best artificial distribution pattern is the gradually descending distribution of SMF lengths and the gradually ascending distribution of RDPS, as the number of fiber spans is increased, regardless of the average RDPS, the optimal net residual dispersion, and the dispersion coefficient of the dispersion compensating fiber.

A Study on the expectation of residual layer thickness in roller pressing imprint process (롤러 가압 임프린트 공정에서 잔류막 두께 예측에 관한 연구)

  • Cho, Young Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2013
  • In order to apply nano imprint technology in large area process, roller pressing is promising because of its low cost and high productivity. When pressing mold by roller, liquid resin is locally squeezed between mold and substrate. In this study, the main focus is to understand which process parameter affects residual layer. To do this, a simple analytical model was introduced. Especially, we consider the aspect ratio of patterns as essential cause of variation of the thickness in the equation. As a result, when the aspect ratio of pattern in the mold increases, the thickness of residual layer also increases. In conclusion, we show that the uniformity of residual layer could be accomplished by the control of velocity and pressing force in roller pressing imprint process.

High-Velocity Impact Damage Behavior of Carbon/Epoxy Composite Laminates

  • Kim, Young A.;Woo, Kyeongsik;Cho, Hyunjun;Kim, In-Gul;Kim, Jong-Heon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.190-205
    • /
    • 2015
  • In this paper, the impact damage behavior of USN-150B carbon/epoxy composite laminates subjected to high velocity impact was studied experimentally and numerically. Square composite laminates stacked with $[45/0/-45/90]_{ns}$ quasi-symmetric and $[0/90]_{ns}$ cross-ply stacking sequences and a conical shape projectile with steel core, copper skin and lead filler were considered. First high-velocity impact tests were conducted under various test conditions. Three tests were repeated under the same impact condition. Projectile velocity before and after penetration were measured by infrared ray sensors and magnetic sensors. High-speed camera shots and C-Scan images were also taken to measure the projectile velocities and to obtain the information on the damage shapes of the projectile and the laminate specimens. Next, the numerical simulation was performed using explicit finite element code LS-DYNA. Both the projectile and the composite laminate were modeled using three-dimensional solid elements. Residual velocity history of the impact projectile and the failure shape and extents of the laminates were predicted and systematically examined. The results of this study can provide the understanding on the penetration process of laminated composites during ballistic impact, as well as the damage amount and modes. These were thought to be utilized to predict the decrease of mechanical properties and also to help mitigate impact damage of composite structures.

Effects of Residual Dispersion in Half Transmission Section on Net Residual Dispersion in Optical Transmission Links with Dispersion Management and Mid-Span Spectral Inversion (분산 제어와 Mid-Span Spectral Inversion이 적용된 광전송 링크에서 반 전송 구획의 잉여 분산이 전체 잉여 분산에 미치는 영향)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.455-460
    • /
    • 2014
  • The system performance is analized for the optimal design of the transmission links with dispersion management and optical phase conjugation for compensating for the optical signal distortion due to the group velocity dispersion and optical nonlinear Kerr effects in the long-haul optical transmission system. That is, the effect of the relation of the residual dispersion in both half transmission sections with respect with optical phase conjugator (OPC) on the net residual dispersion (NRD) is assessed. It is conformed that the best compensation is obtained in NRD of 10 ps/nm, which is only controlled by the difference of the residual dispersion between each half transmission sections.

ESTIMATING THE GEOSTROPHIC VELOCITY COMPONENT IN THE SEA SURFACE VELOCITY OBSERVED BY THE HF RADAR IN THE UPSTREAM OF THE KUROSHIO

  • Tokeshi, Ryoko;Ichikawa, Kaoru;Fujii, Satoshi;Sato, Kenji;Kojima, Shoichiro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.672-675
    • /
    • 2006
  • The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity.

  • PDF

Compensation Characteristics of WDM Signals Depending on Dispersion Coefficient of Dispersion Compensating Fiber and Residual Dispersion Per Span (분산 보상 광섬유의 분산 계수와 중계 구간 당 잉여 분산에 따른 WDM 신호의 보상 특성)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • The effects of dispersion coefficient of dispersion compensating fiber (DCF) and residual dispersion per span (RDPS) on in the dispersion managed optical links for compensating the distorted 960 Gbps wavelength division multiplexd (WDM) signals due to group velocity dispersion (GVD) and optical nonlinear effects of single mode fiber (SMF) are investigated. It is confirmed that optimal net residual dispersion (NRD), which greatly affects compensating for optical signals, should be induced under the large launch power condition, irrelevant on the considered dispersion coefficient of DCF and RDPS. It is also confirmed that system performances are greatly improved by selecting the very small RDPS and very large dispersion coefficient of DCF.

Optimal Net Residual Dispersion for Compensation of WDM Signals in Dispersion Managed Optical Links with Random Distribution of SMF Length and RDPS (중계 구간의 SMF 길이와 RDPS의 분포가 랜덤한 분산 제어 광전송 링크에서의 WDM 신호의 보상을 위한 최적 전체 잉여 분산)

  • Lee, Seong-Real
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.638-641
    • /
    • 2012
  • Optimal net residual dispersion (NRD) and effective launching power range of optical transmission links with random distribution of single mode fiber (SMF) length and residual dispersion per span (RDPS) required to flexibly design of optical links in dispersion management (DM) technique for compensating the distorted 960 Gbps optical signals due to interaction of group velocoty dispersion (GVD) and optical nonlinear effects are induced.

  • PDF