• Title/Summary/Keyword: residual slip

Search Result 59, Processing Time 0.025 seconds

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

SEISMIC STABILITY OF SATURATED REINFORCED SOIL WALLS

  • Kuwano, Jiro;Izawa, Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.66-71
    • /
    • 2010
  • This paper studies the effect of saturation of backfill on the seismic stability of reinforced soil walls (RSWs) using centrifuge shaking table tests. For comparison, degradation of static stability and seismic stability of a RSW under unsaturated condition was also investigated. Test results showed that the RSW under saturated condition had enough static stability. However, seismic stability of saturated RSW significantly decreased as compared with that under unsaturated condition. The saturated model RSW did not collapse, though it showed large deformation. It maintained sufficient stability after shakings although a clear slip surface appeared in the backfill. Finally, it is discussed how to evaluate residual stability of RSWs damaged by earthquakes with test results and the simple evaluation method proposed by authors.

  • PDF

One-Step Nanoscale Patterning of Silver Ionic Ink via Elastic Mold Deformation (탄성 몰드 변형을 이용한 은 이온 잉크의 원-스텝 나노스케일 패터닝)

  • Yong Suk Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.252-256
    • /
    • 2023
  • A one-step method for nanoscale patterning of silver ionic ink on a substrate is developed using a microscale, elastic mold deformation. This method yields unique micro/nanoscale metallic structures that differ from those produced using the original molds. The linewidth of these metallic structures is significantly reduced (approximately 10 times) through the sidewall deformation of the original mold cavity on a thin liquid film, as verified by finite element analysis. The process facilitates the fabrication of various, isolated and complex micro/nanoscale metallic structures with negligible residual layers at low cost and high throughput. These structures can be utilized for various applications, including optoelectronics, wearable sensors, and metaverse-related devices. Our approach offers a promising tool for manipulation and fabrication of micro/nanoscale structures of various functional materials.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

The Initiation of Slip on Frictional Fractures (마찰 전단면의 전단거동과 에너지방출률)

  • Park, Chi-Hyun
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.344-351
    • /
    • 2010
  • Slip along a frictional fracture can be approached as initiation and propagation of a mode II crack along its own plane. Fracture mechanics theories predict that under pure mode II loading initiation will occur when the energy release rate of the fracture attains a critical value ($G_{IIC}$), which is generally taken as a material property. For the past few years the rock mechanics group at Purdue University has investigated experimentally the dependence of $G_{IIC}$ on normal stress and on the frictional characteristics of a fracture. A number of experiments has been conducted first on acrylic, a material that, using photoelastic methods, allows visualization of the stress field ahead of the fracture tip; and later on gypsum, a rock model material with relatively low unconfined compression strength. The experimental investigation has been expanded to include other frictional materials with higher unconfined compression strength. Direct shear tests have been conducted on specimens made with cement paste. New observations together with previous experiments indicate that $G_{IIC}$ can only be considered a material property when the peak friction angle of the discontinuity is similar to the residual friction angle; otherwise the critical energy release rate increases with normal stress.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

The Effect of Roll Arrangement in the Cold Rolling Mill on the Wear (냉간 압연기용 롤의 배열이 마멸에 미치는 영향)

  • 손영지
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.74-80
    • /
    • 1999
  • Work roll wear in the cold rolling of mild steel strip is strongly affected by rolling materials, rolling conditions such as roll arrangement in the cold rolling mill and lubrication. The tests were performed to find the effects of roll arrangement n the cold rolling mill on the work roll wear under the same lubricating conditions. The obtained results are as follows:If the distance of cold rolling is about 60km, the surface roughness of its was reduced by half(Ra 0.49${\mu}{\textrm}{m}$) and Pc(peak count) also was decreased to 60 ea/cm.It is easier for CC(Continuous casting) to make a slip on rolling than IC(Ingot casting). It is due to surface mirror in which first residual product appears and iron powder included Al2O3 is sticked. Because bending degree of 4Hi-rolling mill is higher than 6Hi-rolling mill, the first surface mirror was occurred to its center-point which is loaded strongly. 6Hi-rolling mill shape-controlled by intermediate roll doesn't need the initial crown to work roll. Therefore, fatigue and wear would appear a little bit.

  • PDF

A Study on Characteristics of PRAT and Cornering due to the Belt Angle of Tire by the FEM (FEM을 이용한 타이어의 벨트각도에 따른 PRAT 및 코너링 특성 연구)

  • Sung, Ki-Deug;Kim, Seong-Rae;Kim, Ki-Hyun;Kim, Sun-Joo;Cho, Choon-Tack
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.104-112
    • /
    • 2006
  • The influence of tire belt angle on the Plysteer Residual Aligning Torque(PRAT) and the cornering stiffness by the FEM has been studied. The PRAT is a performance factor of the tire about vehicle pull, and the cornering stiffness has relation to vehicle steering response of outdoor test. To validate FE model for analysis, simulation data for both the static stiffness(vertical, lateral) and the PRAT have been compared with the experimental data. In addition to the characteristics of the PRAT and the cornering stiffness due to the tire belt angle, rolling and cornering contact characteristics have been studied. The tendency of the PRAT and the cornering stiffness due to the belt angle can be used as a guide line for the tire design in relation to vehicle pull and vehicle steering response.

Lightweight Characteristics and Sintering behavior of Porcelain by Addition FAHM(Fly-Ash Hollow Microsphere) (FAHM(Fly-Ash Hollow Microsphere)첨가에 의한 도자기의 소성특성과 경량화)

  • Kim, Geun-Hee;Pee, Jae-Hwan;Kim, Jong-Young;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.228-235
    • /
    • 2011
  • Sintering behavior and lightweight characteristics of porcelain by addition of FAHM (Fly-Ash Hollow Microsphere) were evaluated. Green body of Backja composition (general porcelain) in which FAHM was added(15 and 20 wt%) was made by slip casting method. The green body was sintered at 1270 and $1290^{\circ}C$ and maintained for 1h. The bulk density and linear shrinkage of the sintered body with FAHM (20 wt%) decreased. As the contents of FAHM. increased, mullite and cristobalite phases increased. In the microstructure, FAHM shells remained after sintering, and the generation of mullite fibers around FAHM shells also were confirmed. the weight of porcelain with of 20% FAHM decreased by 40% and residual FAHM shells promoted the mullite of generation in the matrix.

Mechanical Characteristics of Cementing Plane in Concrete Repair under Various Cementing Conditions (접합조건에 따른 콘크리트 접합부의 역학적 특성)

  • 김재동;정요훈
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.362-372
    • /
    • 2003
  • Since the occurrence of Portland cement, a great number of concrete structures were constructed. But the concrete structures have their own life times, which inevitably demand repairing treatments, especially on their surface parts. Currently many various methods have been developed and are being applied fer this purpose. In this study, a newly developed method using pneumatic chipping machine and anchor pin was adopted far repair of old concrete structure and the mechanical characteristics of cementing plane between existing and new concrete were tested. Comparing the removal methods for the decrepit part of existing concrete using pneumatic chipping machine and hydraulic breaker, the peak cohesion was higher when using chipping machine at the cementing plane. On the other hand, the residual cohesion was higher for the case of breaker. Step shaped chipping on the cementing plane was effective in increasing peak cohesion, which results 14% increase in the case of 30 mm step height and 22% in 50 mm height when compared with planar chipping plane. The use of anchor pin increased the residual cohesion, which restricted shear slip on the cementing plane after peak shear stress and the tensile strength of 32% compared with that of non-anchored case. According to the combined effect of step shaped chipping of 30 mm and anchor pin with an interval of 15 cm, the peak cohesion reached up to 77% and the residual cohesion showed 180% of the ones of the fresh concrete, respectively.