• 제목/요약/키워드: residual friction angle

검색결과 41건 처리시간 0.019초

풍화잔적토의 함수비 변화에 따른 전단거동특성 (Shear Behavioral Characteristics of Weathered Residual Soil for the Change Water Content)

  • 유남재;김영길;이종호
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.119-124
    • /
    • 1997
  • This thesis is an experimental research of shear behavioral characteristics and shear behavioral coefficient of weathered residual soil which is mostly contained in soil of Korea. Using the weathered residual soil from mountain near Kangwon National University, this experimental research were contained the physical properties of sample in term of the basic test method such as specific gravity, plastic and liquid limit, grain-size distribution, density and water content. Experimental results obtained from direct shear test sand triaxial compression tests show that according to step loading, linear strain and linear stress increase continually and angle of internal friction decreases just little according to incresing of water content in case of ignoring the cohesion, and angle of internal friction appears the maximum angle near a optimum moisture content in case of considering the cohesion.

  • PDF

인발 선재의 잔류응력에 미치는 공정변수의 영향 및 잔류응력 완화 (Influence of Process Parameters on Residual Stress and Reducing Residual Stress in Drawn Wire)

  • 이상곤;황원호;김병민;배철민
    • 소성∙가공
    • /
    • 제14권8호통권80호
    • /
    • pp.704-711
    • /
    • 2005
  • The influence of process parameters in drawn wire on residual stresses was investigated. Based on a FE-simulation of the wire drawing process, the effects of process parameters such as semi-die angle, reduction, friction coefficient and bearing length on the residual stresses were investigated. The validity of the FE-simulation results was verified by the comparison of the previous simulated results with experimental data. In this study, semi-die angle and die reduction have significant effect on the residual stresses at the surface of drawn wire. Several methods such as, addition of axial tension, application of skin pass, straightening in multi-roll straightener etc, were suggested in the previous studies to reduce the residual stresses. In this study, the results show that the concurrent application of skin pass with low die reduction and low semi-die angle at the final stage of drawing operation reduces dramatically the both axial and hoop residual stresses after drawing

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

유한요소 해석에 의한 공정변수가 인발 선재의 잔류응력에 미치는 영향평가 및 완화에 관한 연구 (A Study on the Influence of Process Parameters on Residual Stress and Reducing Residual Stress for Drawn Wire Using FE-Analysis)

  • 이상곤;황원호;김병민;배철민;이충열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.834-837
    • /
    • 2005
  • This study presents a study on the influence of process parameters(semi-die angle, die reduction, friction condition, and bearing length) in drawn wire on residual stresses were investigated using FE-analysis. In this study, semi-die angle and die reduction have a significant effect on the residual stresses at the surface of drawn wire. In the previous study, in order to reduce the residual stresses, several methods were suggested: addition of axial tension, application of skin pass, straightening in multi-roll straightener etc. In this study, it can be known that the concurrent application of skin pass with low die reduction and low semi-die angle at the final stage of drawing operation reduces dramatically the both axial and hoop residual stresses after drawing.

  • PDF

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

일차파괴된 암반사면의 전단강도 및 보강설계법 고찰 (A study on the determination of shear strength and the support design of pre-failed rock slope)

  • 조태진;김영호
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Strength properties of lime stabilized and fibre reinforced residual soil

  • Okonta, Felix N.;Nxumalo, Sinenkosi P.
    • Geomechanics and Engineering
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2022
  • The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.

직접전단실험을 이용한 세립토의 전단강도 및 유변학적 정수 산정 (Estimation of Shear Strength and Rheological Parameters of Fine-Grained Soil Using Direct Shear Test)

  • 박근우;홍원택;이종섭
    • 한국지반환경공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.29-37
    • /
    • 2017
  • 집중호우로 인하여 산악지반에 발생하는 토석류의 거동은 대상지반 세립분의 전단강도 및 유변학적 특성들에 의하여 영향을 받기 때문에, 두 특성에 대한 정수는 토석류 거동을 파악하는데 매우 중요한 요소이다. 본 연구에서는 직접전단 실험을 통하여 세립분의 전단강도 및 유변학적 정수를 평가하고자 하였다. 건조상태와 액성한계상태로 조성된 두 가지 세립분 시료에 대하여 직접 전단실험을 수행하였으며, 연직응력에 따른 전단강도를 측정하여 점착력과 내부마찰각을 산정하였다. 또한 액성한계로 조성된 시료의 잔류전단강도를 획득하기 위하여 전단변형률속도와 전단방향을 변화시켜 반복전단실험을 수행하였다. 실험 결과, 액성한계상태의 시료는 건조 상태 시료에 비해 내부마찰각은 작지만 점착력은 더 큰 것으로 나타났으며, 잔류전단강도를 통해 산정한 내부마찰각과 점착력은 첨두전단강도에 의해 산정된 결과보다 작은 것으로 나타났다. 반복전단 결과, 전단변형률속도와 잔류전단강도는 선형적인 관계를 보였으며, 전단변형률속도-잔류전단강도 관계의 기울기로써 결정되는 점성은 약 $73.60Pa{\cdot}s$로 산정되었다. 본 연구는 직접전단 장비가 산악지반 토석류 거동과 관련된 세립분의 전단강도 및 유변학적 정수 산정에 효과적으로 활용될 수 있음을 보여준다.

압력식 쏘일네일링의 인발저항력 증가: 이론적 검증 (Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution)

  • 서형준;박성원;정경한;최항석;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구 (A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests)

  • 권준욱;김선명;윤지선
    • 한국지반공학회논문집
    • /
    • 제16권6호
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF