Browse > Article
http://dx.doi.org/10.12989/gae.2022.28.1.035

Strength properties of lime stabilized and fibre reinforced residual soil  

Okonta, Felix N. (Department of Civil Engineering Science, University of Johannesburg)
Nxumalo, Sinenkosi P. (Department of Civil Engineering Science, University of Johannesburg)
Publication Information
Geomechanics and Engineering / v.28, no.1, 2022 , pp. 35-48 More about this Journal
Abstract
The effect of discrete polypropylene fibre reinforcement on shear strength parameters, tensile properties and isotropic index of stabilized compacted residual subgrade was investigated. Composites of compacted subgrade were developed from polypropylene fibre dosage of 0%, 1%, 2.5% and 4% and 3% cement binder. Saturated compacted soil benefited from incremental fibre dosage, the mobilized friction coefficient increased to a maximum at 2.5% fibre dosage from 0.41 to 0.58 and the contribution due to further increase in fibre dosage was marginal. Binder stabilization increased the degree of isotropy for unreinforced soil at lower fibre dosage of 1% and then decreased with higher fibre dosage. Saturation of 3% binder stabilized soil decreased the soil friction angle and the degree of isotropy for both unstabilized and binder stabilized soil increased with fibre dosage. The maximum tensile stress of 3% binder stabilized fibre reinforced residual soil was 3-fold that of 3% binder stabilized unreinforced soil. The difference in computed and measured maximum tensile and tangential stress decreased with increase in fibre dosage and degree of stabilization and polypropylene fibre reinforced soil met local and international criteria for road construction subgrade.
Keywords
polypropylene fibre; residual soil; shear strength; tangential stress; tensile strength;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Michalowski, R.L. and Ermak, J. (2003), "Triaxial compression of sand reinforced with fibers", J. Geotech. Geoenviron. Eng., 129(2), 125-136. http://ascelibrary.org/doi/abs/10.1061/(ASCE)10900241(2003)129:2(125).   DOI
2 Oderah, V. and Kalumba, D. (2016), "Effect of water on the strength behaviour of fibre reinforced soils", Proceedings of the 1st Southern African Geotechnical Conference.
3 Mohammed, A.M., Indra, A.S.H., Harahap, S.H., Marto, A., Alavi, S.V., Abad, N.K. and Montasir, O. and Ali, A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437. http://doi.org/10.12989/gae.2019.18.4.427.   DOI
4 Onal, O. and Sariavci, C. (2019), "Stabilization of Meles Delta soils using cement and lime mixtures", Geomech. Eng., 19(6) 543-554. http://doi.org/10.12989/gae.2019.19.6.543.   DOI
5 Mirzababaei, M., Arulrajah, A., Horpibulsuk, S. and Aldava, M. (2017), "Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories", Geotext. Geomembranes, 45(5), 422-429. http://dx.doi.org/10.1016/j.geotexmem.2017.06.002.   DOI
6 Ibraim, E. and Fourmont, S. (2006), "Behaviour of sand reinforced with fibers", Proceedings of the Geotechnical Symposium in Roma, Netherlands, 807-818.
7 Pradhan, P., Kar, R. and Naik, A. (2012), "Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil", Geotech. Geological Eng., 30(1), 15-25. https://doi.org/10.1007/s10706-011-9445-6.   DOI
8 Chhun, T.K., Choo, H., Kaothon, P. and Yune, C.Y. (2020), "Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black", Geomech. Eng., 23(1), 31-38. http://doi.org/10.12989/gae.2020.23.1.031.   DOI
9 Consoli, N.C., Montardo, J.P., Prietto, P.D.M. and Pasa, G.S. (2002), "Engineering behavior of a sand reinforced with plastic waste", J. Geotech. Geoenviron. Eng., 128(6), 462-472. http://ascelibrary.org/doi/abs/10.1061/(ASCE)10900241(2002)128:6(462).   DOI
10 Gray, D.H. and Ohashi, H. (1983), "Mechanics of fiber reinforcement in sand", J. Geotech. Eng., 109(3), 335-353. http://ascelibrary.org/doi/abs/10.1061/(ASCE)07339410(1983)109:3(335).   DOI
11 Ibraim, E., Diambra, A., Muir Wood, D. and Russell, A.R. (2010), "Static liquefaction of fibre reinforced sand under monotonic loading", Geotext. Geomembranes, 28(4), 374-385. http://doi.org/10.1016/j.geotexmem.2009.12.001.   DOI
12 Gregory, G.H. and Chill, D.S. (1998), "Stabilization of earth slopes with fiber reinforcement", Proceedings of the 6th International Conference on Geosynthetics, Atlanta.
13 Tang, C., Shi, B. and Zhao, L. (2010), "Interfacial shear strength of fiber reinforced soil", Geotext. Geomembranes, 28(1), 54-62. http://doi.org/10.1016/j.geotexmem.2009.10.001.   DOI
14 Yoobanpot, N., Jamsawang, P., Krairan, K., Jongpradist, P. and Horpibulsuk, S. (2018). "Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment", Geomech. Eng., 15(4), 1005-1016. https://doi.org/10.12989/gae.2018.15.4.1005.   DOI
15 Jianhong, Y., Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576. http://doi.org/10.1016/j.ijrmms.2008.08.004.   DOI
16 Laskar, A. and Pal, S.K. (2013), "Effects of waste plastic fibres on compaction and consolidation behaviour of reinforced soil", Electron. J. Geotech. Eng., 18, 1547-1558.
17 Blight, G. (1998), Mechanics of Tropical Residual Soils, Cengage, Pretoria: Building Publication, South Africa.
18 Boz, A., Sezer, A., O zdemir, T., Hizal, G. and Azdeniz Dolmaci, O. (2018), "Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers", Arabian J. Geosci., 11(6), 1-14. https://doi.org/10.1007/s12517-018-3458-x.   DOI
19 Brink, A.B.A. (1998), Engineering Geology of Southern Africa, Reprinted edn. Pretoria: Building Publication, South Africa.
20 Sabbar, A.S, Chegenizadeh, A. and Nikraz, H. (2018), "Effect of slag and bentonite on shear strength parameters of sandy soil", Geomech. Eng., 15(1), 659-668. https://doi.org/10.12989/gae.2018.15.1.659.   DOI
21 Anagnostopoulos, C.A., Tzetzis, D. and Berketis, K. (2014), "Shear strength behaviour of polypropylene fibre reinforced cohesive soils", Geomech. Geoeng., 9(3), 241-251. https://doi.org/10.1080/17486025.2013.804213.   DOI
22 Simoni, A. and Houlsby, G. (2006), "The direct shear strength and dilatancy of sand-gravel mixtures", Geotech. Geological Eng., 24(3), 523-549. https://doi.org/10.1007/s10706-004-5832-6.   DOI
23 Yazhini, S. and Ramakrishna, D. (2018), "Studies on bond and flexural strength of sisal fibre rope reinforced concrete", IJSEC, 8(3), 1- 40.
24 Yetimoglu, T. and Salbas, O. (2003), "A study on shear strength of sands reinforced with randomly distributed discrete fibers", Geotext. Geomembranes, 21(2), 103-110. http://dx.doi.org/10.1016/S0266-1144(03)00003-7.   DOI
25 Attom, M.F. and Al-Tamimi, A.K. (2010), "Effects of polypropylene fibers on the shear strength of sandy soil", Int. J. Geosci., 1(1), 44-50. https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=21588359-201005-201211020039-201211020039-44-50.   DOI
26 Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.   DOI
27 Gupta, D. and Kumar, A. (2016), "Strength characterization of cement stabilized and fiber reinforced Clay-Pond ash mixes", Int. J. Geosynth. Ground Eng., 2(4), 1-11. https://doi.org/10.1007/s40891-016-0069-z.   DOI
28 Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Hungarian Soc. Architects and Engineers, 25, 355-358.
29 Aryal, S. and Kolay, P.K. (2020), "Long-term durability of ordinary Portland cement and polypropylene fibre stabilized kaolin soil using Wetting-Drying and Freezing-Thawing test", Int. J. Geosynth. Ground Eng., 6(1). https://doi.org/10.1007/s40891-020-0191-9.   DOI
30 Choubane, B., Armaghani, J.M. and Ho, R.K. (2001), "Full-Scale laboratory evaluation of polypropylene fiber reinforcement of subgrade soils", Transportation Research Board Annual Meeting, Washington Paper No 01-2157.
31 Diambra, A., Ibraim, E., Muir Wood, D. and Russell, A.R. (2010), "Fibre reinforced sands: Experiments and modelling", Geotext. Geomembranes, 28(3), 238-250. http://doi.org/10/1016/j.geotexmem.2009.09.010.   DOI
32 Mirzababaei, M., Mohamed, M. and Miraftab, M. (2017), "Analysis of strip footings on fiber-reinforced slopes with the aid of particle image velocimetry", J. Mater. Civil Eng., 29(4), 4016243. http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.19435533.0001758.   DOI