• Title/Summary/Keyword: reservoir capacity

Search Result 314, Processing Time 0.024 seconds

A Study on Estimate of Evaluation Indices of Water Supply Capacity for Multipurpose Dam (다목적댐의 응수공급능력 평가지표 산정에 관한 연구)

  • Cha, Sang Hwa;Park, Gi Beom
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2004
  • In this study analyzed the reliability indices against the water supply ability of Andong dam. The water supply analysis of Andong dam used the HEC-5 model. So Andong dam simulated planed water-supply capacity of Andong dam as increase and decrease +5% ~ -5% of water supply quantity. Water-supply capacity of Andong dam estimated, deficit occurrence, deficit quantity, deficit period. As the results estimated reliability(occurrence based, time based, quantity based) and resiliency vulnerability and with water supply capacity evaluation indices of Andong dam. Also reliability(occurrence based, time based, quantity based), resiliency, vulnerability and resiliency indices are estimated to evaluated the performance of water supply on Andong dam, and their relationships are evaluated.

An Irrigation Reliability Assessment of Agricultural Reservoir to Establish Response Plan of Future Climate Change Adaptation (기후변화 대응방안 수립을 위한 농업용 저수지 이수안전도 평가)

  • Kwon, Hyung-Joong;Nam, Won-Ho;Choi, Gyeong-Suk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • This study assessed the reliability of the agricultural water supply based on future climate change scenarios, and suggested plans to improve the reliability in order to promote the adaptability of irrigation water in agricultural reservoirs to climate change. The assessment of agricultural water supply reliability was performed on reservoirs which had a lower water quantity than their design basis and which had recently been subject to drought. In other words, from the irrigation districts of main intake works among the reservoirs managed by the Korea Rural Community Corporation, 1~2 districts in each province-that is, a total of 13 districts -that were recently designated as a district for securing agricultural water (drought prevention district) were selected. Climate change scenarios were applied to the selected districts to analyze their future water supply reliability compared to the current level. All districts selected showed a drought frequency of 4 years or shorter, which demonstrated the need to establish climate change response plans. As plans for responding to climate change, a plan that utilizes supplemental intake works to reduce the area of the irrigation districts of main intake works, and another one that increases the capacity of main intake works were adopted to reanalyze their water supply reliability. When the area of the irrigation districts of main intake works was reduced by about 30~40%, the drought frequency dropped to more than 10 years, securing the reliability of water supply. To secure the reliability by increasing the capacity of main intake works, it was calculated that about 19,000~2,400,000 tons need to be added to each reservoir. In addition, climate change response plans were suggested to improve the reliability of the water supply in each district based on the results of economic analysis.

Analysis on Flood Control Effect of Siphon Spillway by Reservoir Routing (저수지 추적을 통한 사이펀 여수로의 홍수조절 효과 분석)

  • Ko, Suhyeon;Kim, Jaeyoung;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.11
    • /
    • pp.55-63
    • /
    • 2013
  • Agricultural small dam reservoirs in Korea are vulnerable to flooding because of insufficient flood control capacity and deterioration such that reservoir water level is likely to rise rapidly and a large amount of water release quickly to downstream without flood warning. In this study, we performed hydrologic analysis to estimate design flood(200 years return period ${\times}1.2$) and also evaluated the effect of siphon spillway as a structural countermeasure for flood control and mitigation by applying reservoir routing to the Jipyeong reservoir, located in Sangju, Korea. The results show that the design flood was calculated at $284.3m^3/s$, and water level and water release decreased by 40cm and $91m^3/s$, respectively.

Improvement of Inflow Estimation Data by Precise Measurement of Water Level in Reservoir (저수지 수위 정밀 측정에 의한 댐 유입량 자료 개선)

  • Park, Ji-Chang;Kim, Nam;Ryoo, Kyong-Sik
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.309-314
    • /
    • 2009
  • A accurate reservoir inflow is very important as providing information for decision making about the water balance and the flood control, as well as for dam safety. The methods to calculate the inflow were divided by the directed method to measure streamflow from upstream reservoirs and the indirected method to estimate using the correlation of reservoir water level and release. Currently, the inflow of multi-purpose dam is being calculated by the indirect method and the reservoir water level to calculate the storage capacity is being used by centimeters(cm) units. Corresponding to the storage volume of 1cm according to scale and water level of multi-purpose dam comes up to from several 10 thousand tons to several million tons. If it converts to inflow during 1 hour, and it comes to several hundred $m^3/sec$(CMS). Therefore, the inflow calculated on the hourly is largely deviated along the water level changes and is occurred minus value as the case. In this research, the water level gage has been developed so that it can measure a accurate water level for the improvement for the error and derivation of inflow, even though there might be various hydrology and meteorologic considerations to analyse the water balance of reservoir. Also, it is confirmed that the error and the standard derivation of data observed by the new gage is decreased by 89,6% and 1/3 & 87% and 2/3 compared to that observed by the existing gage of Daecheong and Juam multi-purpose dam.

Temporal and Spatial Characteristics of Water Quality in a River-Reservoir (Paldang) (하천형 호수인 팔당호 수질의 시공간적 특성)

  • Kong, Dongsoo;Min, Jeong-Ki;Byeon, Myeongseop;Park, Hae Kyung;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.470-486
    • /
    • 2018
  • This study is to investigate the allochthonous load and water quality of a typical river-reservoir, Paldang during spring (March ~ May) of 17 years (2001 ~ 2017). Phosphorus loading from point sources seems to have been reduced by 74 % in the 2010s. As a result, trophic state of the Paldang reservoir, eutrophic during the 2000s, has returned to the lmesotrophic state. Along with decrease in phosphorus concentration, standing crops of algae (Chl.a) decreased, and concentration of biodegradable organic material decreased to the past level. Concentration of total suspended solids has decreased, and it is due to the decrease of phytoplankton standing crops since the mid-2000s. As transparency increased, it is estimated that euphotic area increased by 22 % and euphotic capacity expanded by 27 %. In the river/transition zone of Paldang, concentration of organic matter increases slightly due to algal growth, but concentration of all water quality items decreases in the lacustrine zone. Although algal growth rate revealed positive correlation with concentration of phosphorus, it was insignificant. Algal growth appeared to be dependent on renewal of phosphorus by flow, than either flow rate or phosphorus concentration. The empirical model including inflow phytoplankton concentration fit well with observed values, and indicates the Paldang reservoir is greatly influenced by allochthonous loads.

A Study on the Verification of water level criteria for forecasting system of reservoir failure (저수지 붕괴예보 시스템의 수위기준 검증 연구)

  • Lee, Baeg;Choi, Byounghan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.51-55
    • /
    • 2019
  • The loss of safety for reservoirs brought about by climate change and facility aging leads to reservoir failures, which results in the loss of lives and property damage in downstream areas. Therefore, it is necessary to provide a Reservoir Failure Forecasting System for downstream residents to detect the early signs of failure (with sensors) in real-time and perform safety management to prevent and minimize possible damage. For the verification of established water level management criteria, 10 water level data up to reservoir capacity was selected. Weight factor and trend line were applied to dramatic increase section of water level in the 1 year period data. The results shows that water level criteria based on three even parts shows less than 7% of standard deviation and it is appropriate to verify management criteria.

Assessing the Influence Radius of a Water Treatment System Installed in a Reservoir Using Tracer Experiment and 3D Numerical Simulation (추적자 실험 및 3차원 수치모의를 이용한 저수지 수처리 장치의 영향반경 평가)

  • Park, Hyung Seok;Lee, Eun Ju;Ji, Hyun Seo;Choi, Sun Hwa;Chun, Se Woong
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.3-12
    • /
    • 2018
  • The objective of this study was to evaluate the radius of influence of effluent of water treatment system developed for the purpose of improvement of reservoir water quality using fluorescent dye (Rhodamine-WT) tracer experiment and 3-D numerical model. The tracer experiment was carried out in a medium-sized agricultural reservoir with a storage capacity of $227,000m^3$ and an average depth of 1.6 m. A guideline with a total length of 160 m was installed at intervals of 10 m in the horizontal direction from the discharge part, and a Rhodamine measurement sensor (YSI 6130, measurement range $0-200{\mu}g/L$) was used to measure concentration changes in time, distance, and depth. Experimental design was established in advance through Jet theory and the diffusion process was simulated using ELCOM, a three dimensional hydraulic dynamics model. As a result of the study, the direct effect radius of the jet emitted from the applied water treatment system was about 50-70 m, and the radius of physical effect by the advection diffusion was judged to be 100-120 m. The numerical simulations of effluent advection-diffusion of the water treatment system using ELCOM showed very similar results to those of the impact radius analysis using the tracer experiment and jet flow empirical equations. The results provide valuable information on the spatial extent of the water quality improvement devices installed in the reservoir and the facility layout design.

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

The Soil and Water Pollution caused by the Weathering of Pyrophyllite Deposits: Upstream Part of Hoidong Water Reservoir in Pusan (납석광산에서 발생하는 토양 및 수질오염 실태 : 부산광역시 회동수원지 상류 지역)

  • 박맹언;김근수
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.149-156
    • /
    • 1998
  • Enoronmental problems caused by certain geologic conditions Include pollution of soil by heavy metal, acidization of souls , acid mine drainage, Pound-water pollution, and natural radioactivity, as well as zoo-logical hazards such as landslide and subsidence. The acrid mine drainage contains large amount of heavy metals nO, therefore. cause serious pollution onto the nearby drainage systems and soils. In spite of this prospective environmental danger, few studies have been done on the acid mine drainage derived from non-metallic ore deposits such as pyrophyllitefNapseok) deposits. The sudo-bearing pyrophyllite ores, alteration zones, and mine talllngs of pyrophylllte deposits produce acrid mine drainage by the okidation of weathering. Compared to the fresh host rocks, the ores and altered rocks of pyrophyllite deposits produce acidic solution which contain higher amount of heavy metals because of OeP lower buffering capacity to acrid solution. The pus of urine water and nearby stream water of pyrophyllite deposits are 2.1~3.7, which are strong- ly acidic and much lower than that (6.2~7.2) of upstream water and than that (6.8~7.6) of the stream water derived from the non-mineralized area. This study reveals that this acrid mine drainage can affect the downstream area which is 8km far from the pyrophyllite deposits, even though the drain Is diluted with abundant non-contaminated river water This suggmists that not only acid mine drainage but also the sulfide-bearing sediments originated from the pyrophyllite deposits move downstream and form acidic water through continuous oxidation reaction. The heavy metals such as Pb, Zn, Cu, Cd, Nl, Mn and Fe are enriched In the mine water of low pH, and their contents decrease as the pH of mine water Increases because of the Influx of fresh stream wainer. SoUs of the Pyrophyulte deposits are characterized by high contents of heavy metals. The stream sediments containing the yellowish brown precipitates formed by neutralization of acid mine drainage occur in all parts of the stream derived from the pyrophyllite deposits, and the sediments also contain high amounts of heavy metals. In summary, the acid mine drainage of the pyrophyllite deposits is located in the upstream part of Hoidong water reservoir in Pusan contains large amounts of heavy metals and flows into the Holdong water reservoir without any purification process. To protect the water of Holdong reservoir, the acid mine drainage should be treated with a proper purification process.

  • PDF

An Estimation Study of Watershed Pollution Load Reduction Using Environmental Capacity (환경용량을 고려한 유역 오염부하삭감량 추정 연구)

  • Jung, Jae-Sung;Park, Young-Ki;Kim, Jong-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1265-1273
    • /
    • 2006
  • The environmental capacity and watershed pollution load reduction of Yongdam reservoir were estimated by the simulation of water quality variation process with the target water quality establishment, pollution load estimation and flow analysis. The potable raw water $I{\sim}II$, COD $1.0{\sim}3.0$ mg/L and TP $0.01{\sim}0.03$ mg/L were selected as the target water quality Yongdam reservoir water quality model was constructed with WASP5 contained 42 segments and the correlation of calibrated results were BOD 0.73, $PO_4-P$ 0.98. The environmental capacity for target quality COD 2.0 mg/L and TP 0.02 mg/L were BOD $131,880{\sim}4,694$ kg/d, TP $7,855 {\sim}167$ kg/d which were less than exists, and the related reduction ratios were BOD $51{\sim}62%$, TP $47{\sim}67%$ which were middle amount in exists. The load reduction ratios to meet the potable raw water $I{\sim}II$ were BOD $72{\sim}16%$, TP $78{\sim}36%$ in existing conditions and BOD $81{\sim}44%$, TP $84{\sim}52%$ in new conditions. BOD was the least one and TP was the second least in 4 results. The effects of the load reduction assignment to subbasin were dominant in TP but little in COD.