• Title/Summary/Keyword: reserve capacity

Search Result 122, Processing Time 0.023 seconds

A New Required Reserve Capacity Determining Scheme with Regard to Real time Load Imbalance

  • Park, Joon Hyung;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.511-517
    • /
    • 2015
  • Determination of the required reserve capacity has an important function in operation of power system and it is calculated based on the largest loss of supply. However, conventional method cannot be applied in future power system, because potential grid-connected distributed generator and abnormal temperature cause the large load imbalance. Therefore this paper address new framework for determining the optimal required reserve capacity taking into account the real time load imbalance. At first, we introduce the way of operating reserve resources which are the secondary, tertiary, Direct Load Control (DLC) and Load shedding reserves to make up the load imbalance. Then, the formulated problem can be solved by the Probabilistic Dynamic Programming (PDP) method. In case study, we divide two cases for comparing the cost function between the conventional method and the proposed method.

Reserve capacity of fatigue damaged internally ring stiffened tubular joints

  • Thandavamoorthy, T.S.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.149-167
    • /
    • 2004
  • Offshore platforms have to serve in harsh environments and hence are likely to be damaged due to wave induced fatigue and environmental corrosion. Welded tubular joints in offshore platforms are most vulnerable to fatigue damage. Such damages endanger the integrity of the structure. Therefore it is all the more essential to assess the capacity of damaged structure from the point of view of its safety. Eight internally ring stiffened fatigue damaged tubular joints with nominal chord and brace diameter of 324 mm and 219 mm respectively and thickness 12 mm and 8 mm respectively were tested under axial brace compression loading to evaluate the reserve capacity of the joints. These joints had earlier been tested under fatigue loading under corrosive environments of synthetic sea water and hence they have been cracked. The extent of the damage varied from 35 to 50 per cent. One stiffened joint was also tested under axial brace tension loading. The residual strength of fatigue damaged stiffened joint tested under tension loading was observed to be less than one fourth of that tested under compression loading. It was observed in this experimental investigation that in the damaged condition, the joints possessed an in-built load-transfer mechanism. A bi-linear stress-strain model was developed in this investigation to predict the reserve capacity of the joint. This model considered the strain hardening effect. Close agreement was observed between the experimental and predicted results. The paper presents in detail the experimental investigation and the development of the analytical model to predict the reserve capacity of internally ring stiffened joints.

Analysis on Power Transactions of Generation and Operating Reserve Based on Marginal Profits (한계이득 측면에서 분석한 발전 예비력 포함 전력거래)

  • Shin, Jae-Hong;Lee, Kwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.440-445
    • /
    • 2006
  • As an electricity industry transforms into a competitive system, an electricity market revolves into a combined market consisting of generation and operating reserve. This paper presents a market model combined by an energy market and an operating reserve market. In a competitive structure, Gencos strive to choose strategic bidding parameters that maximize total profit resulting from an energy market and a reserve market. The primary goal of the paper is to analyze power transactions of generation and operation reserve based on marginal profits and capacity limits at NE(Nash Equilibrium). In case studies, the reserve market and the energy market are compared at the n from the viewpoints of marginal profits, prices and transaction quantities. It is shown that the marginal profit in an energy market is equal to that in a reserve market, and Gencos strategic bidding is greatly influenced by capacity limit.

A Study on the Assessment of Reasonable Reserve Margin in Basic Plan of Electricity Supply and Demand (전력수급기본계획의 적정 설비예비율 산정 개선방안)

  • Kim, C.S.;Rhee, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.418-419
    • /
    • 2006
  • After electricity power industry restructuring, "Long term power development plan", setting up by government, is replaced by "Basic plan of electricity supply and demand". In this basic plan, one of the most important factors is assessment of appropriate capacity margin. The benefit of GENCO is decided by the market price, and the price is largely affected by the level of reserve margin. As a consequence, appropriate reserve margin is determined by market power. However, Cost Based Pool(CBP) is a limited competitive market, and government policy for supply and demand is very important factor or reserve margin determination. This paper points out issues about existing reserve margin assessment method which is used in basic plan and suggests improved assessment method. In the case study, capacity margin is calculated by proposed assessment method and result shows the advantages of suggested method.

  • PDF

An Analysis on the Usage of Pumped Hydro Storage as a Non-Spinning Reserve Power (양수발전기의 대기예비력 활용방안 분석)

  • Jeong, Seung-Hoon;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Total capacity of pumped hydro storage(PHS) in Korean power system reaches 4,700MW, though the share of it is about 4.56% of total capacity The Unit Commitment program, E-terracommit which is used for the operational purpose by KPX, includes the PHS model. But the model has a defect that it does not include the information of water level of upper reservoir. Therefore two types of improved the PHS models are represented in this paper. The first model is a optimized model by connecting the upper reservoir water level to the non-spinning reserve. The other model is to have priority allocate both the PHS and combined cycle generator for non-spinning reserve. The proposed two models and the E-terracommit model is compared and resulting to have improvement in estimating non-spinning reserve when using the proposed models.

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

Determination of Secondary Reserve Requirement Through Interaction-dependent Clearance Between Ex-ante and Ex-post

  • Kim, Sun Kyo;Park, Joon-Hyung;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • This paper discusses a method for the determination of frequency control reserve requirement with consideration of the interaction between ex-ante planning and real-time balancing. In proposed method, we consider the fact that the delivered energy for tertiary control reserve is determined based on required capacity for secondary control reserve and the expected amount of load errors. Uncertain load errors are derived by Brownian motion, an optimization method is suggested using a stochastic programming. In a short, we propose an interactive dependent method for determining secondary control reserve requirement based on the principle that it satisfies to minimize the total cost. As a result, this paper provides will analyze for an example model to demonstrate the capabilities of the method.

Development of Methodology of New Effective Installed Reserve Rate considering Renewable Energy Generators (신재생에너지전원을 고려한 새로운 유효설비예비율 평가방법의 개발)

  • Park, Jeong-Je;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new effective installed reserve rate in order to evaluate reliability of power system considering renewable generators, which include uncertainty of resource supply. It is called EIRR(effective installed reserve rate) in this paper. It is developed with considering capacity credit based on ELCC by using LOLE reliability criterion. While the conventional installed reserve rate index yields over-evaluation reliability of renewable generators, the proposed EIRR describes actual effective installed reserve rate. However, it is not the probabilistic reliability index as like as LOLE or EENS but another deterministic effective reliability index. The proposed EIRR is able to evaluate the realistic contribution to the reliability level for power system considering wind turbine generators and solar cell generators with high uncertainty in resource supply. The case study in model system as like as Jeju power system size presents a possibility that the proposed EIRR can be used practically as a new deterministic reliability index for generation expansion planning or operational planning in future.

A Comparative Study of Maintenance Scheduling Methods for Small Utilities

  • Ong, H.L.;Goh, T.N.;Eu, P.S.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.1
    • /
    • pp.13-26
    • /
    • 2003
  • This paper presents a comparative study of a few commonly used maintenance scheduling methods for small utilities that consists solely of thermal generating plants. Two deterministic methods and a stochastic method are examined. The deterministic methods employ the leveling of reserve capacity criterion, of which one uses a heuristic rule to level the deterministic equivalent load obtained by using the product of the unit capacity and its corresponding forced outage rate. The stochastic method simulates the leveling of risk criterion by using the peak load carry capacity of available units. The results indicate that for the size and type of the maintenance scheduling problem described In this study, the stochastic method does not produce a schedule which is significantly better than the deterministic methods.

  • PDF

A Study on the Causality between Electric Reserve Margin, Electricity Tariff, Renewable Energy, Economic Growth, and Concurrent Peak in Winter and Summer: OECD Panel Analysis (전력예비율과 전기요금, 신재생, 경제성장, 동·하계 동시피크 간 인과관계 연구 : OECD 패널 분석)

  • Lee, Jung-Ho;Park, Kyung-Min;Park, Jung-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1415-1422
    • /
    • 2018
  • In Korea, prior to 2011, the electric reserve margin followed the probabilistic reliability view and the planning reserve margin had been operated at about 15% based on the assumption that power outage was permitted within 0.5 days a year. However, after experiencing the shortage of the electric generation capacity in Sept. 15, 2011, the planning reserve margin was selected as 22% to improve the reliability of the electric supply. In this paper, using panel data of 28 OECD countries over the period 2000-2014 we attempted to empirically examine the linkage between reserve margin, electricity tariffs, renewable energy share, GDP per capita, and summer / winter peak-to-peak ratios. As a result, all four independent variables have been significant for the electric reserve margin, and in particular, we found that countries with similar peaks in winter and summer have operated 4.3% higher reserve margin than countries experiencing only summer peak.