• Title/Summary/Keyword: research on mathematical creativity education

Search Result 88, Processing Time 0.02 seconds

A Research on the Real State of Story-telling Mathematics Class of Middle School (스토리텔링을 적용한 중학교 수학 수업에 대한 교사의 인식 및 활용 실태)

  • Yu, EunHwa;Yun, Jong-Gug
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.441-463
    • /
    • 2015
  • The big issue of mathematics education in 2009 revised curriculum is to introduce story-telling in math textbook and to aim toward the math that students can learn easily and interestingly. Therefore, this study examine the perception of middle school teachers in working with story-telling, analyze actual utilization of story-telling in class and provide the basic materials for effective practical application. After making questionnaires to check the real conditions of the story-telling and asking math teachers in charge of the first and second graders, this research came to the conclusion as follows. First, the teachers who took part in this research showed positive perception in story-telling textbook the practical use of a variety of materials and the improvement of thinking faculty and creativity. Second, math teachers made use of a variety of storytelling data and especially reflection media in class, but this was limited in introductory part. Mathematic concept was delivered mainly through the activities of exchanging questions and answers between the teachers and students. Third, students showed positive reaction about story-telling class on the whole. For example, they understood the concept easily and they could apply it in real life. However, story-telling failed to bring the attention and interest of math itself. Therefore, teachers' ability is needed in the way that math knowledge and concept should be formed and expressed interestingly.

Development of the Diagnostic Worksheet for Mathematics Academic Counseling (수학학습 상담을 위한 진단 검사지 개발 연구)

  • Ko, Ho Kyoung;Yang, Kil-seok;Lee, Hwan Chul
    • Communications of Mathematical Education
    • /
    • v.29 no.4
    • /
    • pp.723-743
    • /
    • 2015
  • In this research, The objective of the present study was to develop a preliminary diagnostic worksheet for use in consultations for learning mathematics. In order to achieve this, the worksheet was constructed with questions designed to assess the students. Through standardization, diagnostic worksheets for primary school students in grades 5 and 6 and secondary school students in grades 7 and 8 were produced. The diagnostic worksheet was divided into three sections, consisting of the psychology of learning mathematics in section 1, the methodology in learning mathematics in section 2, and personal preferences in learning mathematics in section 3. The psychology of learning mathematics was composed of questions on factors such as, "confidence in math learning ability," "math anxiety," and "attitude in learning mathematics." Moreover, factors in methodology in learning mathematics were "self-management in learning mathematics" and "math learning strategies." Those for personal preferences in learning mathematics asked about "motivation" and "preferences" with questions about "math learning habits" and "management methods for learning math." This diagnostic worksheet can be used as basic material in consulting students on learning mathematics.

Assessment Study on Educational Programs for the Gifted Students in Mathematics (영재학급에서의 수학영재프로그램 평가에 관한 연구)

  • Kim, Jung-Hyun;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.24 no.1
    • /
    • pp.235-257
    • /
    • 2010
  • Contemporary belief is that the creative talented can create new knowledge and lead national development, so lots of countries in the world have interest in Gifted Education. As we well know, U.S.A., England, Russia, Germany, Australia, Israel, and Singapore enforce related laws in Gifted Education to offer Gifted Classes, and our government has also created an Improvement Act in January, 2000 and Enforcement Ordinance for Gifted Improvement Act was also announced in April, 2002. Through this initiation Gifted Education can be possible. Enforcement Ordinance was revised in October, 2008. The main purpose of this revision was to expand the opportunity of Gifted Education to students with special education needs. One of these programs is, the opportunity of Gifted Education to be offered to lots of the Gifted by establishing Special Classes at each school. Also, it is important that the quality of Gifted Education should be combined with the expansion of opportunity for the Gifted. Social opinion is that it will be reckless only to expand the opportunity for the Gifted Education, therefore, assessment on the Teaching and Learning Program for the Gifted is indispensible. In this study, 3 middle schools were selected for the Teaching and Learning Programs in mathematics. Each 1st Grade was reviewed and analyzed through comparative tables between Regular and Gifted Education Programs. Also reviewed was the content of what should be taught, and programs were evaluated on assessment standards which were revised and modified from the present teaching and learning programs in mathematics. Below, research issues were set up to assess the formation of content areas and appropriateness for Teaching and Learning Programs for the Gifted in mathematics. A. Is the formation of special class content areas complying with the 7th national curriculum? 1. Which content areas of regular curriculum is applied in this program? 2. Among Enrichment and Selection in Curriculum for the Gifted, which one is applied in this programs? 3. Are the content areas organized and performed properly? B. Are the Programs for the Gifted appropriate? 1. Are the Educational goals of the Programs aligned with that of Gifted Education in mathematics? 2. Does the content of each program reflect characteristics of mathematical Gifted students and express their mathematical talents? 3. Are Teaching and Learning models and methods diverse enough to express their talents? 4. Can the assessment on each program reflect the Learning goals and content, and enhance Gifted students' thinking ability? The conclusions are as follows: First, the best contents to be taught to the mathematical Gifted were found to be the Numeration, Arithmetic, Geometry, Measurement, Probability, Statistics, Letter and Expression. Also, Enrichment area and Selection area within the curriculum for the Gifted were offered in many ways so that their Giftedness could be fully enhanced. Second, the educational goals of Teaching and Learning Programs for the mathematical Gifted students were in accordance with the directions of mathematical education and philosophy. Also, it reflected that their research ability was successful in reaching the educational goals of improving creativity, thinking ability, problem-solving ability, all of which are required in the set curriculum. In order to accomplish the goals, visualization, symbolization, phasing and exploring strategies were used effectively. Many different of lecturing types, cooperative learning, discovery learning were applied to accomplish the Teaching and Learning model goals. For Teaching and Learning activities, various strategies and models were used to express the students' talents. These activities included experiments, exploration, application, estimation, guess, discussion (conjecture and refutation) reconsideration and so on. There were no mention to the students about evaluation and paper exams. While the program activities were being performed, educational goals and assessment methods were reflected, that is, products, performance assessment, and portfolio were mainly used rather than just paper assessment.

A Model for Constructing Learner Data in AI-based Mathematical Digital Textbooks for Individual Customized Learning (개별 맞춤형 학습을 위한 인공지능(AI) 기반 수학 디지털교과서의 학습자 데이터 구축 모델)

  • Lee, Hwayoung
    • Education of Primary School Mathematics
    • /
    • v.26 no.4
    • /
    • pp.333-348
    • /
    • 2023
  • Clear analysis and diagnosis of various characteristic factors of individual students is the most important in order to realize individual customized teaching and learning, which is considered the most essential function of math artificial intelligence-based digital textbooks. In this study, analysis factors and tools for individual customized learning diagnosis and construction models for data collection and analysis were derived from mathematical AI digital textbooks. To this end, according to the Ministry of Education's recent plan to apply AI digital textbooks, the demand for AI digital textbooks in mathematics, personalized learning and prior research on data for it, and factors for learner analysis in mathematics digital platforms were reviewed. As a result of the study, the researcher summarized the factors for learning analysis as factors for learning readiness, process and performance, achievement, weakness, and propensity analysis as factors for learning duration, problem solving time, concentration, math learning habits, and emotional analysis as factors for confidence, interest, anxiety, learning motivation, value perception, and attitude analysis as factors for learning analysis. In addition, the researcher proposed noon data on the problem, learning progress rate, screen recording data on student activities, event data, eye tracking device, and self-response questionnaires as data collection tools for these factors. Finally, a data collection model was proposed that time-series these factors before, during, and after learning.

A Case Study on Students' Problem Solving in process of Problem Posing for Equation at the Middle School Level (방정식의 문제 만들기 활동에서 문제구조를 중심으로 문제해결에 관한 연구)

  • ChoiKoh, Sang-Sook;Jeon, Sung-Hoon
    • Communications of Mathematical Education
    • /
    • v.23 no.1
    • /
    • pp.109-128
    • /
    • 2009
  • This study aimed to investigate students' learning process by examining their perception process of problem structure and mathematization, and further to suggest an effective teaching and learning of mathematics to improve students' problem-solving ability. Using the qualitative research method, the researcher observed the collaborative learning of two middle school students by providing problem-posing activities of five lessons and interviewed the students during their performance. The results indicated the student with a high achievement tended to make a similar problem and a new problem where a problem structure should be found first, had a flexible approach in changing its variability of the problem because he had advanced algebraic thinking of quantitative reasoning and reversibility in dealing with making a formula, which related to developing creativity. In conclusion, it was observed that the process of problem posing required accurate understanding of problem structures, providing students an opportunity to understand elements and principles of the problem to find the relation of the problem. Teachers may use a strategy of simplifying external structure of the problem and analyzing algebraical thinking necessary to internal structure according to students' level so that students are able to recognize the problem.

  • PDF

Multigroup Generalizability Analysis of Creative Attitude Scale-Korea for Mathematically Gifted and General Students in Middle Schools (수학적 창의성 태도 검사에서 수학영재와 일반학생의 다집단 일반화가능도 분석)

  • Kim, Sungyeun
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.49-70
    • /
    • 2017
  • The purpose of this study was to investigate the relative influence of multiple error sources and to find optimal measurement conditions that obtain a desired level of reliability of a creative attitude test in mathematical creativity. This study analyzed the scores of the Creative Attitude Scale-Korea allowed to access publicly of 125 general students and 109 mathematically gifted students by performing a multivariate generalizability analysis. The main results were as follows. First, based on reliability, the Creative Attitude Scale-Korea was measured less precisely for mathematically gifted students. On the contrary, based on the conditional standard error of measurement, it was measured less precisely for general students. However, the Creative Attitude Scale-Korea showed strong reliability in both groups. Second, the optimal weights should adjust to .3, .3, .4 in mathematically gifted students and .4, .4, .2 in general students with three scoring components of divergent attitude, problem solving attitude, and convergent attitude based on the maximum reliability. Third, to approach desirable reliability, it is possible to use one component of divergent attitude in general students but three components of divergent attitude, problem solving attitude, and convergent attitude in mathematically gifted students. Finally this study proposed application plans for the Creative Attitude Scale-Korea and future directions of research.

A Case Study of "Engineering Design" Education with Emphasize on Hands-on Experience (기계공학과에서 제시하는 Hands-on Experience 중심의 "엔지니어링 디자인" 교과목의 강의사례)

  • Kim, Hong-Chan;Kim, Ji-Hoon;Kim, Kwan-Ju;Kim, Jung-Soo
    • Journal of Engineering Education Research
    • /
    • v.10 no.2
    • /
    • pp.44-61
    • /
    • 2007
  • The present investigation is concerned chiefly with new curriculum development at the Department of Mechanical System & Design Engineering at Hongik University with the aim of enhancing creativity, team working and communication capability which modern engineering education is emphasizing on. 'Mechanical System & Design Engineering' department equipped with new curriculum emphasizing engineering design is new name for mechanical engineering department in Hongik University. To meet radically changing environment and demands of industries toward engineering education, the department has shifted its focus from analog-based and machine-centered hard approach to digital-based and human-centered soft approach. Three new programs of Introduction to Mechanical System & Design Engineering, Creative Engineering Design and Product Design emphasize hands-on experiences through project-based team working. Sketch model and prototype making process is strongly emphasized and cardboard, poly styrene foam and foam core plate are provided as working material instead of traditional hard engineering material such as metals material because these three programs focus more on creative idea generation and dynamic communication among team members rather than the end results. With generative, visual and concrete experiences that can compensate existing engineering classes with traditional focus on analytic, mathematical and reasoning, hands-on experiences can play a significant role for engineering students to develop creative thinking and engineering sense needed to face ill-defined real-world design problems they are expected to encounter upon graduation.

The Development and Application of Girih tiling Program for the Math-Gifted Student in Elementary School (Girih 타일링을 이용한 초등수학영재 프로그램 개발 및 적용 연구)

  • Park, Hye-Jeong;Cho, Young-Mi
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.619-637
    • /
    • 2012
  • The purpose of this study is to develop a new program for elementary math-gifted students by using 'Girih Tililng' and apply it to the elementary students to improve their math-ability. Girih Tililng is well known for 'the secrets of mathematics hidden in Mosque decoration' with lots of recent attention from the world. The process of this study is as follows; (1) Reference research has been done for various tiling theories and the theories have been utilized for making this study applicable. (2) The characteristic features of Mosque tiles and their basic structures have been analyzed. After logical examination of the patterns, their mathematic attributes have been found out. (3) After development of Girih tiling program, the program has been applied to math-gifted students and the program has been modified and complemented. This program which has been developed for math-gifted students is called 'Exploring the Secrets of Girih Hidden in Mosque Patterns'. The program was based on the Renzulli's three-part in-depth learning. The first part of the in-depth learning activity, as a research stage, is designed to examine Islamic patterns in various ways and get the gifted students to understand and have them motivated to learn the concept of the tiling, understanding the characteristics of Islamic patterns, investigating Islamic design, and experiencing the Girih tiles. The second part of the in-depth learning activity, as a discovery stage, is focused on investigating the mathematical features of the Girih tile, comparing Girih tiled patterns with non-Girih tiled ones, investigating the mathematical characteristics of the five Girih tiles, and filling out the blank of Islamic patterns. The third part of the in-depth learning activity, as an inquiry or a creative stage, is planned to show the students' mathematical creativity by thinking over different types of Girih tiling, making the students' own tile patterns, presenting artifacts and reflecting over production process. This program was applied to 6 students who were enrolled in an unified(math and science) gifted class of D elementary school in Daejeon. After analyzing the results produced by its application, the program was modified and complemented repeatedly. It is expected that this program and its materials used in this study will guide a direction of how to develop methodical materials for math-gifted education in elementary schools. This program is originally developed for gifted education in elementary schools, but for further study, it is hoped that this study and the program will be also utilized in the field of math-gifted or unified gifted education in secondary schools in connection with 'Penrose Tiling' or material of 'quasi-crystal'.