• 제목/요약/키워드: research life cycle

검색결과 1,877건 처리시간 0.025초

국가철도연구개발프로젝트의 효과적인 수행을 위한 생명주기모델 개발에 관한 연구 (A study on the Life Cycle Model to effectively conduct the National Railway R&D Project)

  • 최요철;이재천
    • 시스템엔지니어링학술지
    • /
    • 제4권1호
    • /
    • pp.11-18
    • /
    • 2008
  • As a government agency or the Government-donated Research Institute or industrial research institute is intended to develop a product or to construct a system such as a railway safety systems by research and development process, a life cycle model leading a product development or a research and development is essential to them to systematically and effectively progress it. In this paper, the refined life cycle model to effectively conduct the national railway safety project consists of the life cycle phases and their detail descriptions with reference to other life cycle model in the international standard and the other national guidance and other industrial domain such as ship-building, weapon system, and aerospace areas, the proposed life cycle model in the paper considerably reflects the characteristics of the traditional research and development project in railway safety domain. A guidance of a life cycle model which based on lots of the life cycle model in other domains proposes additionally.

  • PDF

생애주기 에너지 분석을 이용한 상수관망의 생애주기 결정 (Life cycle determination of water distribution system using life cycle energy analysis)

  • 이승엽;유도근;김중훈
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.11-21
    • /
    • 2015
  • When designing Water Distribution System (WDS), determination of life cycle for WDS needs to be preceded. And designer should conduct comprehensive design including maintenance and management strategies based on the determined life cycle. However, there are only a few studies carried out until now, and criteria to determine life cycle of WDS are insufficient. Therefore, methodology to determine life cycle of WDS is introduced in this study by using Life Cycle Energy Analysis (LCEA). LCEA adapts energy as an environmental impact criterion and calculates all required energy through the whole life cycle. The model is build up based on the LCEA methodology and model itself can simulate the aging and breakage of pipes through the target life cycle. In addition the hydraulic analysis program EPANET2.0 is linked to developed model to analyze hydraulic factors. Developed model is applied to two WDSs which are A WDS and B WDS. Model runs for 1yr to maximum 100yr target life cycle for both WDSs to check the energy tendency as well as to determine optimal life cycle. Results show that 40yr and 54yr as optimal life cycle for each WDS, and tendency shows the effective energy is keep changing according to the target life cycle. Introduced methodology is expected to use as an alternative option for determining life cycle of WDS.

Life cycle Health Promotion Programs using Traditional Korean Medicine (HaPPs-TKM) and Activation Plan

  • Jo, Jae Kyung;Park, Sunju
    • 대한예방한의학회지
    • /
    • 제24권3호
    • /
    • pp.57-67
    • /
    • 2020
  • Background : The Life cycle Health Promotion Programs using Traditional Korean Medicine (the Life cycle HaPPs-TKM) are the on-going 3rd stage projects that have centered on the development and dissemination of the standard life cycle HaPPs-TKM in the local community. The purpose of the study was to introduce the development background of the standard life cycle HaPPs-TKM and to suggest its activation plan. Methods : Academic and government research reports on the life cycle HaPPs-TKM were analyzed to introduce the development process, development backgrounds and the details of KM-HPP for each life cycle, such as infants and toddlers, adolescents, pregnant women, adults and the elderly. Results : We reviewed the development process of the standard life cycle HaPP-TKM consisted of a series of diagnosis on community members' health problems, establishment of project purpose, research on the involvement of KM intervention in a project, and final development of the project model. And we rediscovered that in the development backgrounds of KM-HPP, there were beneficial goals to manage and promote public health conditions for each life cycle. Conclusion : To activate life cycle HaPPs-TKM, we would recommend that activation plan should include six factors through systematic analysis of research reports. These factors consist of diversified goals for each life-cycle, competency reinforcement of local project manager, diversified Korean Medicinal modalities to enhance Sasang Constitution and Qigong, development of standard Outcome Index, periodical holding of performance contest, and improved guidance of government and associated entities through whole process of HaPP-TKM.

군용 기동장비의 가용도 분석을 통한 교체시기 결정에 관한 연구 ­2 \frac{1}{2} 톤 차량을 중심으로­ (A Study on the Determination of Replacement Time for Military Vehicle Using Availability Analysis ­ Focused on 2 \frac{1}{2} Ton Cargo­)

  • 하형호;강성진
    • 한국국방경영분석학회지
    • /
    • 제29권2호
    • /
    • pp.81-99
    • /
    • 2003
  • This paper propose a method determining life cycle for military vehicle using availability analysis. Many studies determining life cycle for military equipments have been done recently However, those studies focused on economic life such as average system cost method, equivalent annual cost method and cumulative operations cost method. In many case, those results are not appropriate in deciding replacement in the field situation, we consider an effective life cycle method using availability concept. In order to determine an equipment life cycle. Two kinds of availability is considered. One is equipment yearly availability, the other is operational availability with operating distance per year. The life cycle is determined by achieving unit target availability level. The result using this concept for K­511 military vehicle life cycle is about 19 years, which is longer than previous studies.

K-1 전차의 경제 수명 결정에 관한 연구 (A Study on Determination for An Economic Life-cycle of the K-1 Tank)

  • 문형선;김충영
    • 한국국방경영분석학회지
    • /
    • 제23권1호
    • /
    • pp.138-150
    • /
    • 1997
  • The life-cycle of the K-1 tank has been 10 years simply applying that of the U.S. M-1 tank. Therefore, this paper is focused on determination of an economic life-cycle for the K-1 tanks. The current operation cost is adjusted by interest rate and the depreciation cost is applied in this study for more reliable estimation of the life-cycle cost. The Equivalent Annual Method is utilized and then various regression techniques are applied for deriving an effective economic life-cycle. The economic life-cycle of the K-1 tank results in 13 years in this study. considering 95% confidence interval, the life cycle of the K-1 tank is between 10.5 years and 15.5 years.

  • PDF

리튬이온전지의 사이클 수명 모델링 (Modeling to Estimate the Cycle Life of a Lithium-ion Battery)

  • 이재우;이동철;신치범;이소연;오승미;우중제;장일찬
    • Korean Chemical Engineering Research
    • /
    • 제59권3호
    • /
    • pp.393-398
    • /
    • 2021
  • 리튬이온전지의 성능을 최적화하기 위해서는 여러 열화 요소들을 고려한 성능 예측 모델링 기술이 필요하다. 본 연구에서는 리튬이온전지의 사이클 노화로 인한 방전 거동 및 사이클 수명 변화를 수학적으로 모델링하였다. 모델링의 신뢰성을 검증하기 위해 0.25C로 사이클 시험을 진행했으며, 30 사이클 간격으로 진행한 RPT (Reference performance test)를 통해 전기적 거동을 파악하였다. 기존의 리튬이온전지의 사이클 수명 예측 모델에 BOL (Beginning of life)에서 일어나는 현상 중 하나인 Break-in 메커니즘을 반영하여 수명예측 정확도를 개선시켰다. 모델에 근거하여 예측된 사이클 수명 변화는 실제 시험 결과와 잘 일치하였다.

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF

A Study on the Numerical Approach for Industrial Life Cycle: Empirical Evidence from Korea

  • LEE, Kangsun;CHOI, Kyujin;CHO, Daemyeong
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권5호
    • /
    • pp.667-678
    • /
    • 2021
  • The industrial life cycle theory was extended to the product life cycle theory and the corporate life cycle theory, but a conceptual life cycle was presented, and quantitative empirical evidence for this was insufficient. It is intended to improve appropriate resource planning and resource allocation by quantitatively predicting the industrial cycle and its position (age) in the cycle. Human resources, tangible assets, and industrial output analysis were conducted based on 28 years of actual data of 39 industries in Korea by applying the Gompertz model, which is a population ecology prediction model. By predicting with the Gompertz model, the coefficient of determination R2 value was 97% or more, confirming the high suitability with the actual cumulative sales value of the industry. A numerical model for calculating the life cycle of each industry, calculating the saturation of input resources for each industry, and diagnosing the financial stability of the industry was presented. These results will contribute to the decision-making of industrial policy officers for budget planning appropriately for each stage of industry development. Future research will apply the numerical model of this study to foreign national industries, complete an inter-industry convergence diagnostic model (e.g. ease of convergence, suitability of convergence, etc.) for renewal of fading industries.

연구 데이터 관리를 위한 데이터 라이프 사이클 제안 (Data Life Cycle Proposal for Research Data Management)

  • 김주섭;김선태;전예린
    • 한국문헌정보학회지
    • /
    • 제53권4호
    • /
    • pp.309-340
    • /
    • 2019
  • 해외에서는 1990년대부터 데이터의 보존과 큐레이션을 위하여 데이터 라이프 사이클을 개발하였지만, 국내에서는 연구가 상당히 미흡한 실정이다. 본 연구에서는 연구 데이터 관리를 위한 데이터 라이프 사이클을 제안하기 위하여 DCC, ICPSR, IWGDD, DataONE, USGS 그리고 UKDA에서 개발된 데이터 라이프 사이클을 분석하였다. 분석 결과 공통적으로 도출된 구성 요소는 '계획', '생성 및 수집', '프로세스', '보존', '이관 및 폐기', '접근 및 이용', '기술', '보장' 그리고 '백업 및 보안' 등 9개이다. 또한 9개의 구성 요소를 단계별로 세분화하여 해당 단계에서 수행되어야 할 세부 내용을 기술하였다. 향후 국내에서 연구 데이터 관리를 위한 데이터 라이프 사이클을 개발할 때 본 연구의 내용을 적용할 수 있을 것으로 기대한다.

Modeling and Evaluating Inventory Replenishment for Short Life-cycle Products

  • Wang, Ching-Ho;Lint, Shih-Wei;Chou, Shuo-Yan;Tsai, Chun-Hsiang
    • 대한산업공학회지
    • /
    • 제34권4호
    • /
    • pp.386-397
    • /
    • 2008
  • Due to the rapid advancement of technologies, a growing number of innovative products with a short life-cycle have been introduced to the market. As the life-cycles of such products are shorter than those of durable goods, the demand variation during the life-cycle adds to the difficulty of inventory management. Traditional inventory planning models and techniques mostly deal with products that have long life-cycles. The assumptions on the demand pattern and subsequent solution approaches are generally, not suitable for dealing with products with short life-cycles. In this research, inventory replenishment problems based on the logistic demand model are formulated and solved to facilitate the management of products with short life-cycles. An extended Wagner- Whitin approach is used to determine the replenishment cycle, schedules and lot-sizes.